Improved Data Encoding for Emerging Computing Paradigms: From Stochastic to Hyperdimensional Computing
- URL: http://arxiv.org/abs/2501.02715v1
- Date: Mon, 06 Jan 2025 02:07:49 GMT
- Title: Improved Data Encoding for Emerging Computing Paradigms: From Stochastic to Hyperdimensional Computing
- Authors: Mehran Shoushtari Moghadam, Sercan Aygun, M. Hassan Najafi,
- Abstract summary: This study presents an advanced encoding strategy that leverages a hardware-friendly class of low-discrepancy (LD) sequences.
Our approach significantly enhances the accuracy and efficiency of SC and HDC systems by addressing challenges associated with randomness.
Our solution provides a robust framework for integrating SC and HDC in resource-constrained environments, paving the way for efficient and scalable AI implementations.
- Score: 1.523100574874007
- License:
- Abstract: Data encoding is a fundamental step in emerging computing paradigms, particularly in stochastic computing (SC) and hyperdimensional computing (HDC), where it plays a crucial role in determining the overall system performance and hardware cost efficiency. This study presents an advanced encoding strategy that leverages a hardware-friendly class of low-discrepancy (LD) sequences, specifically powers-of-2 bases of Van der Corput (VDC) sequences (VDC-2^n), as sources for random number generation. Our approach significantly enhances the accuracy and efficiency of SC and HDC systems by addressing challenges associated with randomness. By employing LD sequences, we improve correlation properties and reduce hardware complexity. Experimental results demonstrate significant improvements in accuracy and energy savings for SC and HDC systems. Our solution provides a robust framework for integrating SC and HDC in resource-constrained environments, paving the way for efficient and scalable AI implementations.
Related papers
- HD-CB: The First Exploration of Hyperdimensional Computing for Contextual Bandits Problems [0.6377289349842638]
This work introduces the Hyperdimensional Contextual Bandits (HD-CB)
HD-CB is the first exploration of HDC to model and automate sequential decision-making problems.
It consistently achieves competitive or superior performance compared to traditional linear CB algorithms.
arXiv Detail & Related papers (2025-01-28T11:28:09Z) - Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
We propose a synergistic methodology to concurrently optimize perovskite memristor fabrication and develop robust analog DNNs.
We develop "BayesMulti", a training strategy utilizing BO-guided noise injection to improve the resistance of analog DNNs to memristor imperfections.
Our integrated approach enables use of analog computing in much deeper and wider networks, achieving up to 100-fold improvements.
arXiv Detail & Related papers (2024-12-03T19:20:08Z) - Resource-Adaptive Successive Doubling for Hyperparameter Optimization with Large Datasets on High-Performance Computing Systems [0.4334105740533729]
This article proposes a novel Resource-Adaptive Successive Doubling Algorithm (RASDA)
It combines a resource-adaptive successive doubling scheme with the plain Asynchronous Successive Halving Algorithm (ASHA)
It is applied to different types of Neural Networks (NNs) and trained on large datasets from the Computer Vision (CV), Computational Fluid Dynamics (CFD, and Additive Manufacturing (AM) domains.
arXiv Detail & Related papers (2024-12-03T11:25:48Z) - Accelerating Error Correction Code Transformers [56.75773430667148]
We introduce a novel acceleration method for transformer-based decoders.
We achieve a 90% compression ratio and reduce arithmetic operation energy consumption by at least 224 times on modern hardware.
arXiv Detail & Related papers (2024-10-08T11:07:55Z) - Short-Long Convolutions Help Hardware-Efficient Linear Attention to Focus on Long Sequences [60.489682735061415]
We propose CHELA, which replaces state space models with short-long convolutions and implements linear attention in a divide-and-conquer manner.
Our experiments on the Long Range Arena benchmark and language modeling tasks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-06-12T12:12:38Z) - Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach [58.57026686186709]
We introduce the Convolutional Transformer layer (ConvFormer) and propose a ConvFormer-based Super-Resolution network (CFSR)
CFSR inherits the advantages of both convolution-based and transformer-based approaches.
Experiments demonstrate that CFSR strikes an optimal balance between computational cost and performance.
arXiv Detail & Related papers (2024-01-11T03:08:00Z) - Randomized Dimension Reduction with Statistical Guarantees [0.27195102129095]
This thesis explores some of such algorithms for fast execution and efficient data utilization.
We focus on learning algorithms with various incorporations of data augmentation that improve generalization and distributional provably.
Specifically, Chapter 4 presents a sample complexity analysis for data augmentation consistency regularization.
arXiv Detail & Related papers (2023-10-03T02:01:39Z) - Hardware-Efficient Deconvolution-Based GAN for Edge Computing [1.5229257192293197]
Generative Adversarial Networks (GAN) are cutting-edge algorithms for generating new data samples based on the learned data distribution.
We proposed an HW/SW co-design approach for training quantized deconvolution GAN (QDCGAN) implemented on FPGA using a scalable streaming dataflow architecture.
Various precisions, datasets, and network scalability were analyzed for low-power inference on resource-constrained platforms.
arXiv Detail & Related papers (2022-01-18T11:16:59Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Hard-ODT: Hardware-Friendly Online Decision Tree Learning Algorithm and
System [17.55491405857204]
In the era of big data, traditional decision tree induction algorithms are not suitable for learning large-scale datasets.
We introduce a new quantile-based algorithm to improve the induction of the Hoeffding tree, one of the state-of-the-art online learning models.
We present Hard-ODT, a high-performance, hardware-efficient and scalable online decision tree learning system on a field-programmable gate array (FPGA) with system-level optimization techniques.
arXiv Detail & Related papers (2020-12-11T12:06:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.