Conditional Mutual Information Based Diffusion Posterior Sampling for Solving Inverse Problems
- URL: http://arxiv.org/abs/2501.02880v1
- Date: Mon, 06 Jan 2025 09:45:26 GMT
- Title: Conditional Mutual Information Based Diffusion Posterior Sampling for Solving Inverse Problems
- Authors: Shayan Mohajer Hamidi, En-Hui Yang,
- Abstract summary: In computer vision, tasks such as inpainting, deblurring, and super-resolution are commonly formulated as inverse problems.
Recently, diffusion models (DMs) have emerged as a promising approach for addressing noisy linear inverse problems.
We propose an information-theoretic approach to improve the effectiveness of DMs in solving inverse problems.
- Score: 3.866047645663101
- License:
- Abstract: Inverse problems are prevalent across various disciplines in science and engineering. In the field of computer vision, tasks such as inpainting, deblurring, and super-resolution are commonly formulated as inverse problems. Recently, diffusion models (DMs) have emerged as a promising approach for addressing noisy linear inverse problems, offering effective solutions without requiring additional task-specific training. Specifically, with the prior provided by DMs, one can sample from the posterior by finding the likelihood. Since the likelihood is intractable, it is often approximated in the literature. However, this approximation compromises the quality of the generated images. To overcome this limitation and improve the effectiveness of DMs in solving inverse problems, we propose an information-theoretic approach. Specifically, we maximize the conditional mutual information $\mathrm{I}(\boldsymbol{x}_0; \boldsymbol{y} | \boldsymbol{x}_t)$, where $\boldsymbol{x}_0$ represents the reconstructed signal, $\boldsymbol{y}$ is the measurement, and $\boldsymbol{x}_t$ is the intermediate signal at stage $t$. This ensures that the intermediate signals $\boldsymbol{x}_t$ are generated in a way that the final reconstructed signal $\boldsymbol{x}_0$ retains as much information as possible about the measurement $\boldsymbol{y}$. We demonstrate that this method can be seamlessly integrated with recent approaches and, once incorporated, enhances their performance both qualitatively and quantitatively.
Related papers
- Outsourced diffusion sampling: Efficient posterior inference in latent spaces of generative models [65.71506381302815]
We propose amortize the cost of sampling from a posterior distribution of the form $p(mathbfxmidmathbfy) propto p_theta(mathbfx)$.
For many models and constraints of interest, the posterior in the noise space is smoother than the posterior in the data space, making it more amenable to such amortized inference.
arXiv Detail & Related papers (2025-02-10T19:49:54Z) - Entangled Mean Estimation in High-Dimensions [36.97113089188035]
We study the task of high-dimensional entangled mean estimation in the subset-of-signals model.
We show that the optimal error (up to polylogarithmic factors) is $f(alpha,N) + sqrtD/(alpha N)$, where the term $f(alpha,N)$ is the error of the one-dimensional problem and the second term is the sub-Gaussian error rate.
arXiv Detail & Related papers (2025-01-09T18:31:35Z) - Self-Ensembling Gaussian Splatting for Few-Shot Novel View Synthesis [55.561961365113554]
3D Gaussian Splatting (3DGS) has demonstrated remarkable effectiveness for novel view synthesis (NVS)
However, the 3DGS model tends to overfit when trained with sparse posed views, limiting its generalization ability to novel views.
We present a Self-Ensembling Gaussian Splatting (SE-GS) approach to alleviate the overfitting problem.
Our approach improves NVS quality with few-shot training views, outperforming existing state-of-the-art methods.
arXiv Detail & Related papers (2024-10-31T18:43:48Z) - Inverse Entropic Optimal Transport Solves Semi-supervised Learning via Data Likelihood Maximization [65.8915778873691]
conditional distributions is a central problem in machine learning.
We propose a new learning paradigm that integrates both paired and unpaired data.
Our approach also connects intriguingly with inverse entropic optimal transport (OT)
arXiv Detail & Related papers (2024-10-03T16:12:59Z) - Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
We study the problem of gradient descent learning of a single-index target function $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$
We prove that a two-layer neural network optimized by an SGD-based algorithm learns $f_*$ with a complexity that is not governed by information exponents.
arXiv Detail & Related papers (2024-06-03T17:56:58Z) - Improved Algorithm for Adversarial Linear Mixture MDPs with Bandit
Feedback and Unknown Transition [71.33787410075577]
We study reinforcement learning with linear function approximation, unknown transition, and adversarial losses.
We propose a new algorithm that attains an $widetildeO(dsqrtHS3K + sqrtHSAK)$ regret with high probability.
arXiv Detail & Related papers (2024-03-07T15:03:50Z) - A Combinatorial Approach to Robust PCA [18.740048806623037]
We study the problem of recovering Gaussian data under adversarial corruptions.
We assume that the Gaussian noises lie in an unknown $k$-dimensional subspace $U subseteq mathbbRd$, and $s$ randomly chosen coordinates of each data point fall into the control of an adversary.
Our main result is an efficient algorithm that, when $ks2 = O(d)$, recovers every single data point up to a nearly-optimal error of $tilde O(ks/d)$ in expectation.
arXiv Detail & Related papers (2023-11-28T01:49:51Z) - Approximate Function Evaluation via Multi-Armed Bandits [51.146684847667125]
We study the problem of estimating the value of a known smooth function $f$ at an unknown point $boldsymbolmu in mathbbRn$, where each component $mu_i$ can be sampled via a noisy oracle.
We design an instance-adaptive algorithm that learns to sample according to the importance of each coordinate, and with probability at least $1-delta$ returns an $epsilon$ accurate estimate of $f(boldsymbolmu)$.
arXiv Detail & Related papers (2022-03-18T18:50:52Z) - Inductive Mutual Information Estimation: A Convex Maximum-Entropy Copula
Approach [0.5330240017302619]
We propose a novel estimator of the mutual information between two ordinal vectors $x$ and $y$.
We prove that, so long as the constraint is feasible, this problem admits a unique solution, it is in the exponential family, and it can be learned by solving a convex optimization problem.
We show that our approach may be used to mitigate mode collapse in GANs by maximizing the entropy of the copula of fake samples.
arXiv Detail & Related papers (2021-02-25T21:21:40Z) - Extensions to the Proximal Distance Method of Constrained Optimization [7.813460653362097]
We study the problem of minimizing a loss $f(boldsymbolx)$ subject to constraints of the form $boldsymbolDboldsymbolx in S$.
Fusion constraints can capture smoothness, sparsity, or more general constraint patterns.
arXiv Detail & Related papers (2020-09-02T03:32:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.