NeuroPMD: Neural Fields for Density Estimation on Product Manifolds
- URL: http://arxiv.org/abs/2501.02994v1
- Date: Mon, 06 Jan 2025 13:13:13 GMT
- Title: NeuroPMD: Neural Fields for Density Estimation on Product Manifolds
- Authors: William Consagra, Zhiling Gu, Zhengwu Zhang,
- Abstract summary: In our approach, the network directly parameterizes the unknown density function and is trained using a penalized maximum likelihood framework.
The network architecture and estimation algorithm are carefully designed to handle the challenges of high-dimensional product manifold domains.
- Score: 4.096453902709292
- License:
- Abstract: We propose a novel deep neural network methodology for density estimation on product Riemannian manifold domains. In our approach, the network directly parameterizes the unknown density function and is trained using a penalized maximum likelihood framework, with a penalty term formed using manifold differential operators. The network architecture and estimation algorithm are carefully designed to handle the challenges of high-dimensional product manifold domains, effectively mitigating the curse of dimensionality that limits traditional kernel and basis expansion estimators, as well as overcoming the convergence issues encountered by non-specialized neural network methods. Extensive simulations and a real-world application to brain structural connectivity data highlight the clear advantages of our method over the competing alternatives.
Related papers
- A simple algorithm for output range analysis for deep neural networks [0.0]
This paper presents a novel approach for the output range estimation problem in Deep Neural Networks (DNNs) by integrating a Simulated Annealing (SA) algorithm.
The method effectively addresses the challenges by the lack of geometric information and non-linearity inherent inResNets.
arXiv Detail & Related papers (2024-07-02T22:47:40Z) - Neural Networks-based Random Vortex Methods for Modelling Incompressible Flows [0.0]
We introduce a novel Neural Networks-based approach for approximating solutions to the (2D) incompressible Navier--Stokes equations.
Our algorithm uses a Neural Network (NN), that approximates the vorticity based on a loss function that uses a computationally efficient formulation of the Random Vortex Dynamics.
arXiv Detail & Related papers (2024-05-22T14:36:23Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
Deep Neural Network Network (DNN) models are used for programming purposes.
In this paper we examine the use of convex neural recovery models.
We show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
We also show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
arXiv Detail & Related papers (2023-12-19T23:04:56Z) - Neural Network with Local Converging Input (NNLCI) for Supersonic Flow
Problems with Unstructured Grids [0.9152133607343995]
We develop a neural network with local converging input (NNLCI) for high-fidelity prediction using unstructured data.
As a validation case, the NNLCI method is applied to study inviscid supersonic flows in channels with bumps.
arXiv Detail & Related papers (2023-10-23T19:03:37Z) - Neural Fields with Hard Constraints of Arbitrary Differential Order [61.49418682745144]
We develop a series of approaches for enforcing hard constraints on neural fields.
The constraints can be specified as a linear operator applied to the neural field and its derivatives.
Our approaches are demonstrated in a wide range of real-world applications.
arXiv Detail & Related papers (2023-06-15T08:33:52Z) - DMF-TONN: Direct Mesh-free Topology Optimization using Neural Networks [4.663709549795511]
We propose a direct mesh-free method for performing topology optimization by integrating a density field approximation neural network with a displacement field approximation neural network.
We show that this direct integration approach can give comparable results to conventional topology optimization techniques.
arXiv Detail & Related papers (2023-05-06T18:04:51Z) - Conductivity Imaging from Internal Measurements with Mixed Least-Squares
Deep Neural Networks [4.228167013618626]
We develop a novel approach using deep neural networks to reconstruct the conductivity distribution in elliptic problems.
We provide a thorough analysis of the deep neural network approximations of the conductivity for both continuous and empirical losses.
arXiv Detail & Related papers (2023-03-29T04:43:03Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.