PiLaMIM: Toward Richer Visual Representations by Integrating Pixel and Latent Masked Image Modeling
- URL: http://arxiv.org/abs/2501.03005v1
- Date: Mon, 06 Jan 2025 13:30:16 GMT
- Title: PiLaMIM: Toward Richer Visual Representations by Integrating Pixel and Latent Masked Image Modeling
- Authors: Junmyeong Lee, Eui Jun Hwang, Sukmin Cho, Jong C. Park,
- Abstract summary: We propose PiLaMIM, a unified framework that combines Pixel MIM and Latent MIM to integrate their complementary strengths.
Our method uses a single encoder along with two distinct decoders: one for predicting pixel values and another for latent representations, ensuring the capture of both high-level and low-level visual features.
- Score: 7.630967411418269
- License:
- Abstract: In Masked Image Modeling (MIM), two primary methods exist: Pixel MIM and Latent MIM, each utilizing different reconstruction targets, raw pixels and latent representations, respectively. Pixel MIM tends to capture low-level visual details such as color and texture, while Latent MIM focuses on high-level semantics of an object. However, these distinct strengths of each method can lead to suboptimal performance in tasks that rely on a particular level of visual features. To address this limitation, we propose PiLaMIM, a unified framework that combines Pixel MIM and Latent MIM to integrate their complementary strengths. Our method uses a single encoder along with two distinct decoders: one for predicting pixel values and another for latent representations, ensuring the capture of both high-level and low-level visual features. We further integrate the CLS token into the reconstruction process to aggregate global context, enabling the model to capture more semantic information. Extensive experiments demonstrate that PiLaMIM outperforms key baselines such as MAE, I-JEPA and BootMAE in most cases, proving its effectiveness in extracting richer visual representations.
Related papers
- Img-Diff: Contrastive Data Synthesis for Multimodal Large Language Models [49.439311430360284]
We introduce a novel data synthesis method inspired by contrastive learning and image difference captioning.
Our key idea involves challenging the model to discern both matching and distinct elements.
We leverage this generated dataset to fine-tune state-of-the-art (SOTA) MLLMs.
arXiv Detail & Related papers (2024-08-08T17:10:16Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
We propose bfAnyRef, a general MLLM model that can generate pixel-wise object perceptions and natural language descriptions from multi-modality references.
Our model achieves state-of-the-art results across multiple benchmarks, including diverse modality referring segmentation and region-level referring expression generation.
arXiv Detail & Related papers (2024-03-05T13:45:46Z) - Semantics-enhanced Cross-modal Masked Image Modeling for Vision-Language
Pre-training [87.69394953339238]
Masked image modeling (MIM) has recently been introduced for fine-grained cross-modal alignment.
We propose a semantics-enhanced cross-modal MIM framework (SemMIM) for vision-language representation learning.
arXiv Detail & Related papers (2024-03-01T03:25:58Z) - PixelLM: Pixel Reasoning with Large Multimodal Model [110.500792765109]
PixelLM is an effective and efficient LMM for pixel-level reasoning and understanding.
It produces masks from the hidden embeddings of the codebook tokens, which encode detailed target-relevant information.
PixelLM excels across various pixel-level image reasoning and understanding tasks, outperforming well-established methods in multiple benchmarks.
arXiv Detail & Related papers (2023-12-04T03:05:59Z) - u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model [17.3535277338312]
u-LLaVA is an innovative unifying multi-task framework that integrates pixel, regional, and global features to refine the perceptual faculties of MLLMs.
This work contributes a novel mask-based multi-task dataset comprising 277K samples, crafted to challenge and assess the fine-grained perception capabilities of MLLMs.
arXiv Detail & Related papers (2023-11-09T13:18:27Z) - Perceptual MAE for Image Manipulation Localization: A High-level Vision
Learner Focusing on Low-level Features [33.37376410890546]
We propose a method to enhance the Masked Autoencoder (MAE) by incorporating high-resolution inputs and a perceptual loss supervision module.
Based on such an interpretation, we propose a method to enhance the Masked Autoencoder (MAE) by incorporating high-resolution inputs and a perceptual loss supervision module.
arXiv Detail & Related papers (2023-10-10T11:14:29Z) - Improving Pixel-based MIM by Reducing Wasted Modeling Capability [77.99468514275185]
We propose a new method that explicitly utilizes low-level features from shallow layers to aid pixel reconstruction.
To the best of our knowledge, we are the first to systematically investigate multi-level feature fusion for isotropic architectures.
Our method yields significant performance gains, such as 1.2% on fine-tuning, 2.8% on linear probing, and 2.6% on semantic segmentation.
arXiv Detail & Related papers (2023-08-01T03:44:56Z) - PixMIM: Rethinking Pixel Reconstruction in Masked Image Modeling [83.67628239775878]
Masked Image Modeling (MIM) has achieved promising progress with the advent of Masked Autoencoders (MAE) and BEiT.
This paper undertakes a fundamental analysis of MIM from the perspective of pixel reconstruction.
We propose a remarkably simple and effective method, ourmethod, that entails two strategies.
arXiv Detail & Related papers (2023-03-04T13:38:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.