The trace distance between density matrices, a nifty tool in new-physics searches
- URL: http://arxiv.org/abs/2501.03311v1
- Date: Mon, 06 Jan 2025 19:00:00 GMT
- Title: The trace distance between density matrices, a nifty tool in new-physics searches
- Authors: Marco Fabbrichesi, Matthew Low, Luca Marzola,
- Abstract summary: We introduce tools routinely used to compare quantum states: the trace distance and the fidelity.
We find that the former outperforms other quantum information observables considered in the literature.
We provide the first determinations of magic in colliders data by analyzing the top-quark pair production at the LHC and the charmonium decays.
- Score: 0.0
- License:
- Abstract: Quantum information methods have been brought to bear on high-energy physics, including the study of entanglement and Bell nonlocality in collider experiments. Quantum information observables have also been employed to constrain possible new physics effects. We improve on this point by introducing quantum information tools routinely used to compare quantum states: the trace distance and the fidelity. We find that the former outperforms other quantum information observables considered in the literature and, together with the cross section, yields the strongest bounds on possible departures from the Standard Model. The power of the proposed methodology is demonstrated with three examples of new physics searches. The first concerns the chromomagnetic dipole moment of the top quark and yields the first bound computed by means of quantum tomography and actual experimental data. The other two examples use Monte Carlo simulations and set the projected limits on the anomalous couplings of the $\tau$ leptons at Belle and at a future collider, which is taken to be LEP3. For these new physics searches we also compare the sensitivity of the trace distance to those of other quantum information quantities like concurrence, magic, and the fidelity distance. In passing, we provide the first determinations of magic in colliders data by analyzing the top-quark pair production at the LHC and the charmonium decays. The significance is well above the $5\sigma$ level in both the cases.
Related papers
- Quantum decoherence from complex saddle points [0.0]
Quantum decoherence is the effect that bridges quantum physics to classical physics.
We present some first-principle calculations in the Caldeira-Leggett model.
We also discuss how to extend our work to general models by Monte Carlo calculations.
arXiv Detail & Related papers (2024-08-29T15:35:25Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - First Hitting Times on a Quantum Computer: Tracking vs. Local Monitoring, Topological Effects, and Dark States [1.352425155225249]
We investigate a quantum walk on a ring represented by a directed triangle graph with complex edge weights.
The first hitting time statistics are recorded using unitary dynamics interspersed stroboscopically by measurements.
We conclude that, for the IBM quantum computer under study, the first hitting times of monitored quantum walks are resilient to noise.
arXiv Detail & Related papers (2024-02-24T15:59:25Z) - Demonstration of Maxwell Demon-assistant Einstein-Podolsky-Rosen
Steering via Superconducting Quantum Processor [22.793245624610755]
The concept of Maxwell demon plays an essential role in connecting thermodynamics and information theory, while entanglement and non-locality are fundamental features of quantum theory.
Recently, a novel concept called Maxwell demon-assistant Einstein-Podolsky-Rosen (EPR) steering has been proposed, which suggests that it is possible to simulate quantum correlation by doing work.
In this study, we demonstrate Maxwell demon-assistant EPR steering with superconducting quantum circuits.
arXiv Detail & Related papers (2023-11-18T03:27:53Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum discord and steering in top quarks at the LHC [0.0]
We provide the full picture of quantum correlations in top quarks by studying also quantum discord and steering.
quantum discord in a separable quantum state is expected to be detected with high-statistical significance.
In contrast to entanglement, the asymmetric nature of quantum discord and steering can provide witnesses of $CP$-violating physics beyond the Standard Model.
arXiv Detail & Related papers (2022-09-08T18:00:02Z) - A Theoretical Framework for Learning from Quantum Data [15.828697880068704]
We propose a theoretical foundation for learning classical patterns from quantum data.
We present a quantum counterpart of the well-known PAC framework.
We establish upper bounds on the quantum sample complexity quantum concept classes.
arXiv Detail & Related papers (2021-07-13T21:39:47Z) - Quantum speedup for track reconstruction in particle accelerators [51.00143435208596]
We identify four fundamental routines present in every local tracking method and analyse how they scale in the context of a standard tracking algorithm.
Although the found quantum speedups are mild, this constitutes to the best of our knowledge, the first rigorous evidence of a quantum advantage for a high-energy physics data processing task.
arXiv Detail & Related papers (2021-04-23T13:32:14Z) - Application of Quantum Machine Learning using the Quantum Variational
Classifier Method to High Energy Physics Analysis at the LHC on IBM Quantum
Computer Simulator and Hardware with 10 qubits [6.56216604465389]
Quantum machine learning could become a powerful tool for data analysis in high energy physics.
We employ the quantum variational classifier method in two recent LHC flagship physics analyses.
We foresee the usage of quantum machine learning in future high-luminosity LHC physics analyses.
arXiv Detail & Related papers (2020-12-21T18:39:36Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.