Analyzing Bias in Swiss Federal Supreme Court Judgments Using Facebook's Holistic Bias Dataset: Implications for Language Model Training
- URL: http://arxiv.org/abs/2501.03324v1
- Date: Mon, 06 Jan 2025 19:00:09 GMT
- Title: Analyzing Bias in Swiss Federal Supreme Court Judgments Using Facebook's Holistic Bias Dataset: Implications for Language Model Training
- Authors: Sabine Wehnert, Muhammet Ertas, Ernesto William De Luca,
- Abstract summary: biases in training data can introduce unfairness, especially in predicting legal judgment.
This study focuses on analyzing biases within the Swiss Judgment Prediction dataset.
We employ advanced NLP techniques, including attention visualization, to explore the impact of dispreferred descriptors on model predictions.
- Score: 3.725822359130833
- License:
- Abstract: Natural Language Processing (NLP) is vital for computers to process and respond accurately to human language. However, biases in training data can introduce unfairness, especially in predicting legal judgment. This study focuses on analyzing biases within the Swiss Judgment Prediction Dataset (SJP-Dataset). Our aim is to ensure unbiased factual descriptions essential for fair decision making by NLP models in legal contexts. We analyze the dataset using social bias descriptors from the Holistic Bias dataset and employ advanced NLP techniques, including attention visualization, to explore the impact of dispreferred descriptors on model predictions. The study identifies biases and examines their influence on model behavior. Challenges include dataset imbalance and token limits affecting model performance.
Related papers
- How far can bias go? -- Tracing bias from pretraining data to alignment [54.51310112013655]
This study examines the correlation between gender-occupation bias in pre-training data and their manifestation in LLMs.
Our findings reveal that biases present in pre-training data are amplified in model outputs.
arXiv Detail & Related papers (2024-11-28T16:20:25Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Towards Understanding Task-agnostic Debiasing Through the Lenses of Intrinsic Bias and Forgetfulness [10.081447621656523]
The impact on language modeling ability can be alleviated given a high-quality and long-contextualized debiasing corpus.
The effectiveness of task-agnostic debiasing hinges on the quantitative bias level of both the task-specific data used for downstream applications and the debiased model.
We propose a novel framework which can Propagate Socially-fair Debiasing to Downstream Fine-tuning, ProSocialTuning.
arXiv Detail & Related papers (2024-06-06T15:11:11Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
Deep neural networks might behave in a biased manner in many real-world scenarios.
Existing debiasing methods suffer from high costs in bias labeling or model re-training.
We propose a fast model debiasing framework (FMD) which offers an efficient approach to identify, evaluate and remove biases.
arXiv Detail & Related papers (2023-10-19T08:10:57Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - CausalAPM: Generalizable Literal Disentanglement for NLU Debiasing [47.129713744669075]
We analyze the causes of dataset bias from the perspective of causal inference.
We propose CausalAPM, a generalizable literal disentangling framework to ameliorate the bias problem from feature granularity.
arXiv Detail & Related papers (2023-05-04T14:22:26Z) - Provable Detection of Propagating Sampling Bias in Prediction Models [1.7709344190822935]
We provide a theoretical analysis of how a specific form of data bias, differential sampling bias, propagates from the data stage to the prediction stage.
Under reasonable assumptions, we quantify how the amount of bias in the model predictions varies as a function of the amount of differential sampling bias in the data.
We demonstrate that the theoretical results hold in practice even when our assumptions are relaxed.
arXiv Detail & Related papers (2023-02-13T23:39:35Z) - Measuring Causal Effects of Data Statistics on Language Model's
`Factual' Predictions [59.284907093349425]
Large amounts of training data are one of the major reasons for the high performance of state-of-the-art NLP models.
We provide a language for describing how training data influences predictions, through a causal framework.
Our framework bypasses the need to retrain expensive models and allows us to estimate causal effects based on observational data alone.
arXiv Detail & Related papers (2022-07-28T17:36:24Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
State-of-the-art natural language processing (NLP) models often learn to model dataset biases and surface form correlations instead of features that target the intended task.
Previous work has demonstrated effective methods to circumvent these issues when knowledge of the bias is available.
We show a method for training models that learn to ignore these problematic correlations.
arXiv Detail & Related papers (2020-12-02T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.