Structure-Preference Enabled Graph Embedding Generation under Differential Privacy
- URL: http://arxiv.org/abs/2501.03451v1
- Date: Tue, 07 Jan 2025 00:43:18 GMT
- Title: Structure-Preference Enabled Graph Embedding Generation under Differential Privacy
- Authors: Sen Zhang, Qingqing Ye, Haibo Hu,
- Abstract summary: We present SE-PrivGEmb, a structure-preference enabled graph embedding generation under DP.
For arbitrary structure preferences, we design a unified noise tolerance mechanism via perturbing non-zero vectors.
Our method outperforms existing state-of-the-art methods under structural equivalence and link prediction tasks.
- Score: 10.222001716124467
- License:
- Abstract: Graph embedding generation techniques aim to learn low-dimensional vectors for each node in a graph and have recently gained increasing research attention. Publishing low-dimensional node vectors enables various graph analysis tasks, such as structural equivalence and link prediction. Yet, improper publication opens a backdoor to malicious attackers, who can infer sensitive information of individuals from the low-dimensional node vectors. Existing methods tackle this issue by developing deep graph learning models with differential privacy (DP). However, they often suffer from large noise injections and cannot provide structural preferences consistent with mining objectives. Recently, skip-gram based graph embedding generation techniques are widely used due to their ability to extract customizable structures. Based on skip-gram, we present SE-PrivGEmb, a structure-preference enabled graph embedding generation under DP. For arbitrary structure preferences, we design a unified noise tolerance mechanism via perturbing non-zero vectors. This mechanism mitigates utility degradation caused by high sensitivity. By carefully designing negative sampling probabilities in skip-gram, we theoretically demonstrate that skip-gram can preserve arbitrary proximities, which quantify structural features in graphs. Extensive experiments show that our method outperforms existing state-of-the-art methods under structural equivalence and link prediction tasks.
Related papers
- Convergence Guarantees for the DeepWalk Embedding on Block Models [9.898607871253775]
We show how to use the DeepWalk algorithm on graphs obtained from the Block Model (SBM)
Despite being simplistic, the SBM has proved to be a classic model for analyzing algorithms on large graphs.
arXiv Detail & Related papers (2024-10-26T18:35:11Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - Graph Contrastive Learning with Implicit Augmentations [36.57536688367965]
Implicit Graph Contrastive Learning (iGCL) uses augmentations in latent space learned from a Variational Graph Auto-Encoder by reconstructing graph topological structure.
Experimental results on both graph-level and node-level tasks show that the proposed method achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-11-07T17:34:07Z) - FoSR: First-order spectral rewiring for addressing oversquashing in GNNs [0.0]
Graph neural networks (GNNs) are able to leverage the structure of graph data by passing messages along the edges of the graph.
We propose a computationally efficient algorithm that prevents oversquashing by systematically adding edges to the graph.
We find experimentally that our algorithm outperforms existing graph rewiring methods in several graph classification tasks.
arXiv Detail & Related papers (2022-10-21T07:58:03Z) - Exploring High-Order Structure for Robust Graph Structure Learning [33.62223306095631]
Graph Neural Networks (GNNs) are vulnerable to adversarial attack, i.e., an imperceptible structure perturbation can fool GNNs to make wrong predictions.
In this paper, we analyze the adversarial attack on graphs from the perspective of feature smoothness.
We propose a novel algorithm that incorporates the high-order structural information into the graph structure learning.
arXiv Detail & Related papers (2022-03-22T07:03:08Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
We present textbfGraph textbfModel textbfInversion attack (GraphMI), which aims to extract private graph data of the training graph by inverting GNN.
Specifically, we propose a projected gradient module to tackle the discreteness of graph edges while preserving the sparsity and smoothness of graph features.
We design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.
arXiv Detail & Related papers (2021-06-05T07:07:52Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Unsupervised Graph Embedding via Adaptive Graph Learning [85.28555417981063]
Graph autoencoders (GAEs) are powerful tools in representation learning for graph embedding.
In this paper, two novel unsupervised graph embedding methods, unsupervised graph embedding via adaptive graph learning (BAGE) and unsupervised graph embedding via variational adaptive graph learning (VBAGE) are proposed.
Experimental studies on several datasets validate our design and demonstrate that our methods outperform baselines by a wide margin in node clustering, node classification, and graph visualization tasks.
arXiv Detail & Related papers (2020-03-10T02:33:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.