Text to Band Gap: Pre-trained Language Models as Encoders for Semiconductor Band Gap Prediction
- URL: http://arxiv.org/abs/2501.03456v1
- Date: Tue, 07 Jan 2025 00:56:26 GMT
- Title: Text to Band Gap: Pre-trained Language Models as Encoders for Semiconductor Band Gap Prediction
- Authors: Ying-Ting Yeh, Janghoon Ock, Amir Barati Farimani,
- Abstract summary: In this study, we explore the use of a transformer-based language model as an encoder to predict the band gaps of semiconductor materials.
We generate material descriptions in two formats: formatted strings combining features and natural language text generated using the ChatGPT API.
We demonstrate that the RoBERTa model, pre-trained on natural language processing tasks, performs effectively as an encoder for prediction tasks.
- Score: 6.349503549199403
- License:
- Abstract: In this study, we explore the use of a transformer-based language model as an encoder to predict the band gaps of semiconductor materials directly from their text descriptions. Quantum chemistry simulations, including Density Functional Theory (DFT), are computationally intensive and time-consuming, which limits their practicality for high-throughput material screening, particularly for complex systems. Shallow machine learning (ML) models, while effective, often require extensive data preprocessing to convert non-numerical material properties into numerical inputs. In contrast, our approach leverages textual data directly, bypassing the need for complex feature engineering. We generate material descriptions in two formats: formatted strings combining features and natural language text generated using the ChatGPT API. We demonstrate that the RoBERTa model, pre-trained on natural language processing tasks, performs effectively as an encoder for prediction tasks. With minimal fine-tuning, it achieves a mean absolute error (MAE) of approximately 0.33 eV, performing better than shallow machine learning models such as Support Vector Regression, Random Forest, and XGBoost. Even when only the linear regression head is trained while keeping the RoBERTa encoder layers frozen, the accuracy remains nearly identical to that of the fully trained model. This demonstrates that the pre-trained RoBERTa encoder is highly adaptable for processing domain-specific text related to material properties, such as the band gap, significantly reducing the need for extensive retraining. This study highlights the potential of transformer-based language models to serve as efficient and versatile encoders for semiconductor materials property prediction tasks.
Related papers
- TinyHelen's First Curriculum: Training and Evaluating Tiny Language Models in a Simpler Language Environment [30.93798042712827]
Training language models (LMs) and their application agents is increasingly costly due to large datasets and models.
We propose a pipeline to refine text data by eliminating noise, minimizing vocabulary, and maintaining genre-specific patterns.
Our experiments show that leaner pre-training boosts LM learning efficiency.
arXiv Detail & Related papers (2024-12-31T16:08:15Z) - Few-shot learning for automated content analysis: Efficient coding of
arguments and claims in the debate on arms deliveries to Ukraine [0.9576975587953563]
Pre-trained language models (PLM) based on transformer neural networks offer great opportunities to improve automatic content analysis in communication science.
Three characteristics so far impeded the widespread adoption of the methods in the applying disciplines: the dominance of English language models in NLP research, the necessary computing resources, and the effort required to produce training data to fine-tune PLMs.
We test our approach on a realistic use case from communication science to automatically detect claims and arguments together with their stance in the German news debate on arms deliveries to Ukraine.
arXiv Detail & Related papers (2023-12-28T11:39:08Z) - RegaVAE: A Retrieval-Augmented Gaussian Mixture Variational Auto-Encoder
for Language Modeling [79.56442336234221]
We introduce RegaVAE, a retrieval-augmented language model built upon the variational auto-encoder (VAE)
It encodes the text corpus into a latent space, capturing current and future information from both source and target text.
Experimental results on various datasets demonstrate significant improvements in text generation quality and hallucination removal.
arXiv Detail & Related papers (2023-10-16T16:42:01Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
We investigate the possibility of applying Large Language Models to SimulMT tasks.
We conducted experiments using the textttLlama2-7b-chat model on nine different languages from the MUST-C dataset.
The results show that LLM outperforms dedicated MT models in terms of BLEU and LAAL metrics.
arXiv Detail & Related papers (2023-09-13T04:06:47Z) - Extensive Evaluation of Transformer-based Architectures for Adverse Drug
Events Extraction [6.78974856327994]
Adverse Event (ADE) extraction is one of the core tasks in digital pharmacovigilance.
We evaluate 19 Transformer-based models for ADE extraction on informal texts.
At the end of our analyses, we identify a list of take-home messages that can be derived from the experimental data.
arXiv Detail & Related papers (2023-06-08T15:25:24Z) - CodeGen2: Lessons for Training LLMs on Programming and Natural Languages [116.74407069443895]
We unify encoder and decoder-based models into a single prefix-LM.
For learning methods, we explore the claim of a "free lunch" hypothesis.
For data distributions, the effect of a mixture distribution and multi-epoch training of programming and natural languages on model performance is explored.
arXiv Detail & Related papers (2023-05-03T17:55:25Z) - Reprogramming Pretrained Language Models for Protein Sequence
Representation Learning [68.75392232599654]
We propose Representation Learning via Dictionary Learning (R2DL), an end-to-end representation learning framework.
R2DL reprograms a pretrained English language model to learn the embeddings of protein sequences.
Our model can attain better accuracy and significantly improve the data efficiency by up to $105$ times over the baselines set by pretrained and standard supervised methods.
arXiv Detail & Related papers (2023-01-05T15:55:18Z) - Decoder Tuning: Efficient Language Understanding as Decoding [84.68266271483022]
We present Decoder Tuning (DecT), which in contrast optimize task-specific decoder networks on the output side.
By gradient-based optimization, DecT can be trained within several seconds and requires only one P query per sample.
We conduct extensive natural language understanding experiments and show that DecT significantly outperforms state-of-the-art algorithms with a $200times$ speed-up.
arXiv Detail & Related papers (2022-12-16T11:15:39Z) - Self-learning locally-optimal hypertuning using maximum entropy, and
comparison of machine learning approaches for estimating fatigue life in
composite materials [0.0]
We develop an ML nearest-neighbors-alike algorithm based on the principle of maximum entropy to predict fatigue damage.
The predictions achieve a good level of accuracy, similar to other ML algorithms.
arXiv Detail & Related papers (2022-10-19T12:20:07Z) - Efficiently Fusing Pretrained Acoustic and Linguistic Encoders for
Low-resource Speech Recognition [9.732767611907068]
In this work, we fuse a pre-trained acoustic encoder (wav2vec2.0) and a pre-trained linguistic encoder (BERT) into an end-to-end ASR model.
Our model achieves better recognition performance on CALLHOME corpus (15 hours) than other end-to-end models.
arXiv Detail & Related papers (2021-01-17T16:12:44Z) - CodeBERT: A Pre-Trained Model for Programming and Natural Languages [117.34242908773061]
CodeBERT is a pre-trained model for programming language (PL) and nat-ural language (NL)
We develop CodeBERT with Transformer-based neural architecture.
We evaluate CodeBERT on two NL-PL applications by fine-tuning model parameters.
arXiv Detail & Related papers (2020-02-19T13:09:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.