Hyperbolic Binary Neural Network
- URL: http://arxiv.org/abs/2501.03471v1
- Date: Tue, 07 Jan 2025 02:15:58 GMT
- Title: Hyperbolic Binary Neural Network
- Authors: Jun Chen, Jingyang Xiang, Tianxin Huang, Xiangrui Zhao, Yong Liu,
- Abstract summary: Binary Neural Network (BNN) converts full-precision weights and activations into their extreme 1-bit counterparts.
This paper introduces the Hyperbolic Binary Neural Network (HBNN) by leveraging the framework of hyperbolic geometry to optimize the constrained problem.
- Score: 17.84584119915958
- License:
- Abstract: Binary Neural Network (BNN) converts full-precision weights and activations into their extreme 1-bit counterparts, making it particularly suitable for deployment on lightweight mobile devices. While binary neural networks are typically formulated as a constrained optimization problem and optimized in the binarized space, general neural networks are formulated as an unconstrained optimization problem and optimized in the continuous space. This paper introduces the Hyperbolic Binary Neural Network (HBNN) by leveraging the framework of hyperbolic geometry to optimize the constrained problem. Specifically, we transform the constrained problem in hyperbolic space into an unconstrained one in Euclidean space using the Riemannian exponential map. On the other hand, we also propose the Exponential Parametrization Cluster (EPC) method, which, compared to the Riemannian exponential map, shrinks the segment domain based on a diffeomorphism. This approach increases the probability of weight flips, thereby maximizing the information gain in BNNs. Experimental results on CIFAR10, CIFAR100, and ImageNet classification datasets with VGGsmall, ResNet18, and ResNet34 models illustrate the superior performance of our HBNN over state-of-the-art methods.
Related papers
- Lorentzian Residual Neural Networks [15.257990326035694]
We introduce LResNet, a novel Lorentzian residual neural network based on the weighted Lorentzian centroid in the Lorentz model of hyperbolic geometry.
Our method enables the efficient integration of residual connections in hyperbolic neural networks while preserving their hierarchical representation capabilities.
Our findings highlight the potential of LResNet for building more expressive neural networks in hyperbolic embedding space.
arXiv Detail & Related papers (2024-12-19T09:56:01Z) - Cached Operator Reordering: A Unified View for Fast GNN Training [24.917363701638607]
Graph Neural Networks (GNNs) are a powerful tool for handling structured graph data and addressing tasks such as node classification, graph classification, and clustering.
However, the sparse nature of GNN computation poses new challenges for performance optimization compared to traditional deep neural networks.
We address these challenges by providing a unified view of GNN computation, I/O, and memory.
arXiv Detail & Related papers (2023-08-23T12:27:55Z) - On Model Compression for Neural Networks: Framework, Algorithm, and Convergence Guarantee [21.818773423324235]
This paper focuses on two model compression techniques: low-rank approximation and weight approximation.
In this paper, a holistic framework is proposed for model compression from a novel perspective of non optimization.
arXiv Detail & Related papers (2023-03-13T02:14:42Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNs neglect the intrinsic bilinear relationship of real-valued weights and scale factors.
Our work is the first attempt to optimize BNNs from the bilinear perspective.
We obtain robust RBONNs, which show impressive performance over state-of-the-art BNNs on various models and datasets.
arXiv Detail & Related papers (2022-09-04T06:45:33Z) - AdaBin: Improving Binary Neural Networks with Adaptive Binary Sets [27.022212653067367]
This paper studies the Binary Neural Networks (BNNs) in which weights and activations are both binarized into 1-bit values.
We present a simple yet effective approach called AdaBin to adaptively obtain the optimal binary sets.
Experimental results on benchmark models and datasets demonstrate that the proposed AdaBin is able to achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-08-17T05:43:33Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - SiMaN: Sign-to-Magnitude Network Binarization [165.5630656849309]
We show that our weight binarization provides an analytical solution by encoding high-magnitude weights into +1s, and 0s otherwise.
We prove that the learned weights of binarized networks roughly follow a Laplacian distribution that does not allow entropy.
Our method, dubbed sign-to- neural network binarization (SiMaN), is evaluated on CIFAR-10 and ImageNet.
arXiv Detail & Related papers (2021-02-16T07:03:51Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - A Dynamical View on Optimization Algorithms of Overparameterized Neural
Networks [23.038631072178735]
We consider a broad class of optimization algorithms that are commonly used in practice.
As a consequence, we can leverage the convergence behavior of neural networks.
We believe our approach can also be extended to other optimization algorithms and network theory.
arXiv Detail & Related papers (2020-10-25T17:10:22Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Steepest Descent Neural Architecture Optimization: Escaping Local
Optimum with Signed Neural Splitting [60.97465664419395]
We develop a significant and surprising extension of the splitting descent framework that addresses the local optimality issue.
By simply allowing both positive and negative weights during splitting, we can eliminate the appearance of splitting stability in S2D.
We verify our method on various challenging benchmarks such as CIFAR-100, ImageNet and ModelNet40, on which we outperform S2D and other advanced methods on learning accurate and energy-efficient neural networks.
arXiv Detail & Related papers (2020-03-23T17:09:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.