An Effective Docker Image Slimming Approach Based on Source Code Data Dependency Analysis
- URL: http://arxiv.org/abs/2501.03736v1
- Date: Tue, 07 Jan 2025 12:28:57 GMT
- Title: An Effective Docker Image Slimming Approach Based on Source Code Data Dependency Analysis
- Authors: Jiaxuan Han, Cheng Huang, Jiayong Liu, Tianwei Zhang,
- Abstract summary: This paper presents a novel image slimming model named delta-SCALPEL.<n>It employs static data dependency analysis to extract the environment dependencies of the project code.<n>It can reduce image sizes by up to 61.4% while ensuring the normal operation of these projects.
- Score: 11.488840420390394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Containerization is the mainstream of current software development, which enables software to be used across platforms without additional configuration of running environment. However, many images created by developers are redundant and contain unnecessary code, packages, and components. This excess not only leads to bloated images that are cumbersome to transmit and store but also increases the attack surface, making them more vulnerable to security threats. Therefore, image slimming has emerged as a significant area of interest. Nevertheless, existing image slimming technologies face challenges, particularly regarding the incomplete extraction of environment dependencies required by project code. In this paper, we present a novel image slimming model named {\delta}-SCALPEL. This model employs static data dependency analysis to extract the environment dependencies of the project code and utilizes a data structure called the command linked list for modeling the image's file system. We select 20 NPM projects and two official Docker Hub images to construct a dataset for evaluating {\delta}-SCALPEL. The evaluation results show that {\delta}-SCALPEL can reduce image sizes by up to 61.4% while ensuring the normal operation of these projects.
Related papers
- In-Context LoRA for Diffusion Transformers [49.288489286276146]
We show that text-to-image DiTs can effectively perform in-context generation without any tuning.
We name our models In-Context LoRA (IC-LoRA)
Our pipeline generates high-fidelity image sets that better adhere to prompts.
arXiv Detail & Related papers (2024-10-31T09:45:00Z) - ImagiNet: A Multi-Content Dataset for Generalizable Synthetic Image Detection via Contrastive Learning [0.0]
Generative models produce images with a level of authenticity nearly indistinguishable from real photos and artwork.
The difficulty of identifying synthetic images leaves online media platforms vulnerable to impersonation and misinformation attempts.
We introduce ImagiNet, a high-resolution and balanced dataset for synthetic image detection.
arXiv Detail & Related papers (2024-07-29T13:57:24Z) - Image-GS: Content-Adaptive Image Representation via 2D Gaussians [52.598772767324036]
We introduce Image-GS, a content-adaptive image representation based on 2D Gaussians radiance.<n>It supports hardware-friendly rapid access for real-time usage, requiring only 0.3K MACs to decode a pixel.<n>We demonstrate its versatility with several applications, including texture compression, semantics-aware compression, and joint image compression and restoration.
arXiv Detail & Related papers (2024-07-02T00:45:21Z) - Data Augmentation: a Combined Inductive-Deductive Approach featuring
Answer Set Programming [1.1060425537315088]
We propose a framework for synthesizing photo-realistic images via advanced Data Augmentation techniques.
The resulting labeled images undergo a dedicated process based on Deep Learning in charge of creating photo-realistic images that comply with the generated label.
arXiv Detail & Related papers (2023-10-22T21:02:26Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Evaluating Data Attribution for Text-to-Image Models [62.844382063780365]
We evaluate attribution through "customization" methods, which tune an existing large-scale model toward a given exemplar object or style.
Our key insight is that this allows us to efficiently create synthetic images that are computationally influenced by the exemplar by construction.
By taking into account the inherent uncertainty of the problem, we can assign soft attribution scores over a set of training images.
arXiv Detail & Related papers (2023-06-15T17:59:51Z) - Object Detection performance variation on compressed satellite image
datasets with iquaflow [0.0]
iquaflow is designed to study image quality and model performance variation given an alteration of the image dataset.
We do a showcase study about object detection models adoption on a public image dataset.
arXiv Detail & Related papers (2023-01-14T11:20:27Z) - From Coarse to Fine: Hierarchical Pixel Integration for Lightweight
Image Super-Resolution [41.0555613285837]
Transformer-based models have achieved competitive performances in image super-resolution (SR)
We propose a new attention block whose insights are from the interpretation of Local Map (LAM) for SR networks.
In the fine area, we use an Intra-Patch Self-Attention Attribution (IPSA) module to model long-range pixel dependencies in a local patch.
arXiv Detail & Related papers (2022-11-30T06:32:34Z) - Restormer: Efficient Transformer for High-Resolution Image Restoration [118.9617735769827]
convolutional neural networks (CNNs) perform well at learning generalizable image priors from large-scale data.
Transformers have shown significant performance gains on natural language and high-level vision tasks.
Our model, named Restoration Transformer (Restormer), achieves state-of-the-art results on several image restoration tasks.
arXiv Detail & Related papers (2021-11-18T18:59:10Z) - Variable-Rate Deep Image Compression through Spatially-Adaptive Feature
Transform [58.60004238261117]
We propose a versatile deep image compression network based on Spatial Feature Transform (SFT arXiv:1804.02815)
Our model covers a wide range of compression rates using a single model, which is controlled by arbitrary pixel-wise quality maps.
The proposed framework allows us to perform task-aware image compressions for various tasks.
arXiv Detail & Related papers (2021-08-21T17:30:06Z) - A Pipeline for Vision-Based On-Orbit Proximity Operations Using Deep
Learning and Synthetic Imagery [0.0]
Two key challenges currently pose a major barrier to the use of deep learning for vision-based on-orbit proximity operations.
A scarcity of labeled training data (images of a target spacecraft) hinders creation of robust deep learning models.
This paper presents an open-source deep learning pipeline, developed specifically for on-orbit visual navigation applications.
arXiv Detail & Related papers (2021-01-14T15:17:54Z) - From ImageNet to Image Classification: Contextualizing Progress on
Benchmarks [99.19183528305598]
We study how specific design choices in the ImageNet creation process impact the fidelity of the resulting dataset.
Our analysis pinpoints how a noisy data collection pipeline can lead to a systematic misalignment between the resulting benchmark and the real-world task it serves as a proxy for.
arXiv Detail & Related papers (2020-05-22T17:39:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.