TACLR: A Scalable and Efficient Retrieval-based Method for Industrial Product Attribute Value Identification
- URL: http://arxiv.org/abs/2501.03835v2
- Date: Sat, 08 Feb 2025 11:13:23 GMT
- Title: TACLR: A Scalable and Efficient Retrieval-based Method for Industrial Product Attribute Value Identification
- Authors: Yindu Su, Huike Zou, Lin Sun, Ting Zhang, Haiyang Yang, Liyu Chen, David Lo, Qingheng Zhang, Shuguang Han, Jufeng Chen,
- Abstract summary: We introduce TACLR, the first retrieval-based method for Product Attribute Value Identification (PAVI)
It formulates PAVI as an information retrieval task by encoding product profiles and candidate values into embeddings and retrieving values based on their similarity to the item embedding.
It offers three key advantages: (1) it effectively handles implicit and OOD values while producing normalized outputs; (2) it scales to thousands of categories, tens of thousands of attributes, and millions of values; and (3) it supports efficient inference for high-load industrial scenarios.
- Score: 19.911923049421137
- License:
- Abstract: Product Attribute Value Identification (PAVI) involves identifying attribute values from product profiles, a key task for improving product search, recommendations, and business analytics on e-commerce platforms. However, existing PAVI methods face critical challenges, such as inferring implicit values, handling out-of-distribution (OOD) values, and producing normalized outputs. To address these limitations, we introduce Taxonomy-Aware Contrastive Learning Retrieval (TACLR), the first retrieval-based method for PAVI. TACLR formulates PAVI as an information retrieval task by encoding product profiles and candidate values into embeddings and retrieving values based on their similarity to the item embedding. It leverages contrastive training with taxonomy-aware hard negative sampling and employs adaptive inference with dynamic thresholds. TACLR offers three key advantages: (1) it effectively handles implicit and OOD values while producing normalized outputs; (2) it scales to thousands of categories, tens of thousands of attributes, and millions of values; and (3) it supports efficient inference for high-load industrial scenarios. Extensive experiments on proprietary and public datasets validate the effectiveness and efficiency of TACLR. Moreover, it has been successfully deployed in a real-world e-commerce platform, processing millions of product listings daily while supporting dynamic, large-scale attribute taxonomies.
Related papers
- Self-Refinement Strategies for LLM-based Product Attribute Value Extraction [51.45146101802871]
This paper investigates applying two self-refinement techniques to the product attribute value extraction task.
The experiments show that both self-refinement techniques fail to significantly improve the extraction performance while substantially increasing processing costs.
For scenarios with development data, fine-tuning yields the highest performance, while the ramp-up costs of fine-tuning are balanced out as the amount of product descriptions increases.
arXiv Detail & Related papers (2025-01-02T12:55:27Z) - An Empirical Comparison of Generative Approaches for Product Attribute-Value Identification [25.890927969633196]
This paper provides the most comprehensive evaluation of Product Attribute and Value Identification (PAVI) so far.
We compare three different attribute-value generation strategies based on fine-tuning encoder-decoder models on three datasets.
Experiments show that end-to-end AVG approach, which is computationally efficient, outperforms other strategies.
arXiv Detail & Related papers (2024-07-01T10:02:17Z) - EIVEN: Efficient Implicit Attribute Value Extraction using Multimodal LLM [52.016009472409166]
EIVEN is a data- and parameter-efficient generative framework for implicit attribute value extraction.
We introduce a novel Learning-by-Comparison technique to reduce model confusion.
Our experiments reveal that EIVEN significantly outperforms existing methods in extracting implicit attribute values.
arXiv Detail & Related papers (2024-04-13T03:15:56Z) - Enhanced E-Commerce Attribute Extraction: Innovating with Decorative
Relation Correction and LLAMA 2.0-Based Annotation [4.81846973621209]
We propose a pioneering framework that integrates BERT for classification, a Conditional Random Fields (CRFs) layer for attribute value extraction, and Large Language Models (LLMs) for data annotation.
Our approach capitalizes on the robust representation learning of BERT, synergized with the sequence decoding prowess of CRFs, to adeptly identify and extract attribute values.
Our methodology is rigorously validated on various datasets, including Walmart, BestBuy's e-commerce NER dataset, and the CoNLL dataset.
arXiv Detail & Related papers (2023-12-09T08:26:30Z) - ExtractGPT: Exploring the Potential of Large Language Models for Product Attribute Value Extraction [52.14681890859275]
E-commerce platforms require structured product data in the form of attribute-value pairs.
BERT-based extraction methods require large amounts of task-specific training data.
This paper explores using large language models (LLMs) as a more training-data efficient and robust alternative.
arXiv Detail & Related papers (2023-10-19T07:39:00Z) - Product Information Extraction using ChatGPT [69.12244027050454]
This paper explores the potential of ChatGPT for extracting attribute/value pairs from product descriptions.
Our results show that ChatGPT achieves a performance similar to a pre-trained language model but requires much smaller amounts of training data and computation for fine-tuning.
arXiv Detail & Related papers (2023-06-23T09:30:01Z) - A Unified Generative Approach to Product Attribute-Value Identification [6.752749933406399]
We explore a generative approach to the product attribute-value identification (PAVI) task.
We finetune a pre-trained generative model, T5, to decode a set of attribute-value pairs as a target sequence from the given product text.
Experimental results confirm that our generation-based approach outperforms the existing extraction and classification-based methods.
arXiv Detail & Related papers (2023-06-09T00:33:30Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
This research aims to conduct weakly-supervised multi-modal instance-level product retrieval for fine-grained product categories.
We first contribute the Product1M datasets, and define two real practical instance-level retrieval tasks.
We exploit to train a more effective cross-modal model which is adaptively capable of incorporating key concept information from the multi-modal data.
arXiv Detail & Related papers (2022-06-17T15:40:45Z) - Automatic Validation of Textual Attribute Values in E-commerce Catalog
by Learning with Limited Labeled Data [61.789797281676606]
We propose a novel meta-learning latent variable approach, called MetaBridge.
It can learn transferable knowledge from a subset of categories with limited labeled data.
It can capture the uncertainty of never-seen categories with unlabeled data.
arXiv Detail & Related papers (2020-06-15T21:31:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.