Synthetic Data for Portfolios: A Throw of the Dice Will Never Abolish Chance
- URL: http://arxiv.org/abs/2501.03993v4
- Date: Sat, 25 Jan 2025 15:02:38 GMT
- Title: Synthetic Data for Portfolios: A Throw of the Dice Will Never Abolish Chance
- Authors: Adil Rengim Cetingoz, Charles-Albert Lehalle,
- Abstract summary: This paper aims to contribute to a deeper understanding of the limitations of generative models, particularly in portfolio and risk management.
We highlight the inseparable nature of model development and the desired use case by touching on a paradox: generic generative models inherently care less about what is important for constructing portfolios.
- Score: 0.0
- License:
- Abstract: Simulation methods have always been instrumental in finance, and data-driven methods with minimal model specification, commonly referred to as generative models, have attracted increasing attention, especially after the success of deep learning in a broad range of fields. However, the adoption of these models in financial applications has not kept pace with the growing interest, probably due to the unique complexities and challenges of financial markets. This paper aims to contribute to a deeper understanding of the limitations of generative models, particularly in portfolio and risk management. To this end, we begin by presenting theoretical results on the importance of initial sample size, and point out the potential pitfalls of generating far more data than originally available. We then highlight the inseparable nature of model development and the desired use case by touching on a paradox: generic generative models inherently care less about what is important for constructing portfolios (in particular the long-short ones). Based on these findings, we propose a pipeline for the generation of multivariate returns that meets conventional evaluation standards on a large universe of US equities while being compliant with stylized facts observed in asset returns and turning around the pitfalls we previously identified. Moreover, we insist on the need for more delicate evaluation methods, and suggest, through an example of mean-reversion strategies, a method designed to identify poor models for a given application based on regurgitative training, i.e. retraining the model using the data it has itself generated, which is commonly referred to in statistics as identifiability.
Related papers
- Data-Centric AI Governance: Addressing the Limitations of Model-Focused Policies [40.92400015183777]
Current regulations on powerful AI capabilities are narrowly focused on "foundation" or "frontier" models.
These terms are vague and inconsistently defined, leading to an unstable foundation for governance efforts.
In this work, we illustrate the importance of considering dataset size and content as essential factors in assessing the risks posed by models.
arXiv Detail & Related papers (2024-09-25T17:59:01Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
We investigate the performance of the least squares estimators (LSE) under a deterministic MoE model.
We establish a condition called strong identifiability to characterize the convergence behavior of various types of expert functions.
Our findings have important practical implications for expert selection.
arXiv Detail & Related papers (2024-02-05T12:31:18Z) - Generative Machine Learning for Multivariate Equity Returns [0.0]
We study the efficacy of conditional importance weighted autoencoders and conditional normalizing flows for the task of modeling the returns of equities.
The main problem we work to address is modeling the joint distribution of all the members of the S&P 500, or, in other words, learning a 500-dimensional joint distribution.
We show that this generative model has a broad range of applications in finance, including generating realistic synthetic data, volatility and correlation estimation, risk analysis, and portfolio optimization.
arXiv Detail & Related papers (2023-11-21T18:41:48Z) - A transformer-based model for default prediction in mid-cap corporate
markets [13.535770763481905]
We study mid-cap companies with less than US $10 billion in market capitalisation.
We look to predict the default probability term structure over the medium term.
We understand which data sources contribute most to the default risk.
arXiv Detail & Related papers (2021-11-18T19:01:00Z) - Consistent Counterfactuals for Deep Models [25.1271020453651]
Counterfactual examples are used to explain predictions of machine learning models in key areas such as finance and medical diagnosis.
This paper studies the consistency of model prediction on counterfactual examples in deep networks under small changes to initial training conditions.
arXiv Detail & Related papers (2021-10-06T23:48:55Z) - Adaptive learning for financial markets mixing model-based and
model-free RL for volatility targeting [0.0]
Model-Free Reinforcement Learning has achieved meaningful results in stable environments but, to this day, it remains problematic in regime changing environments like financial markets.
We propose to combine the best of the two techniques by selecting various model-based approaches thanks to Model-Free Deep Reinforcement Learning.
arXiv Detail & Related papers (2021-04-19T19:20:22Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
We show that simple model-based agents can outperform state-of-the-art model-free agents in terms of both sample-efficiency and final reward.
Our findings suggest that model-based policy evaluation deserves closer attention.
arXiv Detail & Related papers (2020-08-28T17:58:29Z) - Relating by Contrasting: A Data-efficient Framework for Multimodal
Generative Models [86.9292779620645]
We develop a contrastive framework for generative model learning, allowing us to train the model not just by the commonality between modalities, but by the distinction between "related" and "unrelated" multimodal data.
Under our proposed framework, the generative model can accurately identify related samples from unrelated ones, making it possible to make use of the plentiful unlabeled, unpaired multimodal data.
arXiv Detail & Related papers (2020-07-02T15:08:11Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.