Edit as You See: Image-guided Video Editing via Masked Motion Modeling
- URL: http://arxiv.org/abs/2501.04325v1
- Date: Wed, 08 Jan 2025 07:52:12 GMT
- Title: Edit as You See: Image-guided Video Editing via Masked Motion Modeling
- Authors: Zhi-Lin Huang, Yixuan Liu, Chujun Qin, Zhongdao Wang, Dong Zhou, Dong Li, Emad Barsoum,
- Abstract summary: We propose a novel Image-guided Video Editing Diffusion model, termed IVEDiff.
IVEDiff is built on top of image editing models, and is equipped with learnable motion modules to maintain the temporal consistency of edited video.
Our method is able to generate temporally smooth edited videos while robustly dealing with various editing objects with high quality.
- Score: 18.89936405508778
- License:
- Abstract: Recent advancements in diffusion models have significantly facilitated text-guided video editing. However, there is a relative scarcity of research on image-guided video editing, a method that empowers users to edit videos by merely indicating a target object in the initial frame and providing an RGB image as reference, without relying on the text prompts. In this paper, we propose a novel Image-guided Video Editing Diffusion model, termed IVEDiff for the image-guided video editing. IVEDiff is built on top of image editing models, and is equipped with learnable motion modules to maintain the temporal consistency of edited video. Inspired by self-supervised learning concepts, we introduce a masked motion modeling fine-tuning strategy that empowers the motion module's capabilities for capturing inter-frame motion dynamics, while preserving the capabilities for intra-frame semantic correlations modeling of the base image editing model. Moreover, an optical-flow-guided motion reference network is proposed to ensure the accurate propagation of information between edited video frames, alleviating the misleading effects of invalid information. We also construct a benchmark to facilitate further research. The comprehensive experiments demonstrate that our method is able to generate temporally smooth edited videos while robustly dealing with various editing objects with high quality.
Related papers
- DIVE: Taming DINO for Subject-Driven Video Editing [49.090071984272576]
DINO-guided Video Editing (DIVE) is a framework designed to facilitate subject-driven editing in source videos.
DIVE employs DINO features to align with the motion trajectory of the source video.
For precise subject editing, DIVE incorporates the DINO features of reference images into a pretrained text-to-image model.
arXiv Detail & Related papers (2024-12-04T14:28:43Z) - Temporally Consistent Object Editing in Videos using Extended Attention [9.605596668263173]
We propose a method to edit videos using a pre-trained inpainting image diffusion model.
We ensure that the edited information will be consistent across all the video frames.
arXiv Detail & Related papers (2024-06-01T02:31:16Z) - MotionFollower: Editing Video Motion via Lightweight Score-Guided Diffusion [94.66090422753126]
MotionFollower is a lightweight score-guided diffusion model for video motion editing.
It delivers superior motion editing performance and exclusively supports large camera movements and actions.
Compared with MotionEditor, the most advanced motion editing model, MotionFollower achieves an approximately 80% reduction in GPU memory.
arXiv Detail & Related papers (2024-05-30T17:57:30Z) - GenVideo: One-shot Target-image and Shape Aware Video Editing using T2I Diffusion Models [2.362412515574206]
We propose "GenVideo" for editing videos leveraging target-image aware T2I models.
Our approach handles edits with target objects of varying shapes and sizes while maintaining the temporal consistency of the edit.
arXiv Detail & Related papers (2024-04-18T23:25:27Z) - MotionEditor: Editing Video Motion via Content-Aware Diffusion [96.825431998349]
MotionEditor is a diffusion model for video motion editing.
It incorporates a novel content-aware motion adapter into ControlNet to capture temporal motion correspondence.
arXiv Detail & Related papers (2023-11-30T18:59:33Z) - Ground-A-Video: Zero-shot Grounded Video Editing using Text-to-image
Diffusion Models [65.268245109828]
Ground-A-Video is a video-to-video translation framework for multi-attribute video editing.
It attains temporally consistent editing of input videos in a training-free manner.
Experiments and applications demonstrate that Ground-A-Video's zero-shot capacity outperforms other baseline methods in terms of edit-accuracy and frame consistency.
arXiv Detail & Related papers (2023-10-02T11:28:37Z) - MagicProp: Diffusion-based Video Editing via Motion-aware Appearance
Propagation [74.32046206403177]
MagicProp disentangles the video editing process into two stages: appearance editing and motion-aware appearance propagation.
In the first stage, MagicProp selects a single frame from the input video and applies image-editing techniques to modify the content and/or style of the frame.
In the second stage, MagicProp employs the edited frame as an appearance reference and generates the remaining frames using an autoregressive rendering approach.
arXiv Detail & Related papers (2023-09-02T11:13:29Z) - Edit-A-Video: Single Video Editing with Object-Aware Consistency [49.43316939996227]
We propose a video editing framework given only a pretrained TTI model and a single text, video> pair, which we term Edit-A-Video.
The framework consists of two stages: (1) inflating the 2D model into the 3D model by appending temporal modules tuning and on the source video (2) inverting the source video into the noise and editing with target text prompt and attention map injection.
We present extensive experimental results over various types of text and videos, and demonstrate the superiority of the proposed method compared to baselines in terms of background consistency, text alignment, and video editing quality.
arXiv Detail & Related papers (2023-03-14T14:35:59Z) - Dreamix: Video Diffusion Models are General Video Editors [22.127604561922897]
Text-driven image and video diffusion models have recently achieved unprecedented generation realism.
We present the first diffusion-based method that is able to perform text-based motion and appearance editing of general videos.
arXiv Detail & Related papers (2023-02-02T18:58:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.