Instructive3D: Editing Large Reconstruction Models with Text Instructions
- URL: http://arxiv.org/abs/2501.04374v1
- Date: Wed, 08 Jan 2025 09:28:25 GMT
- Title: Instructive3D: Editing Large Reconstruction Models with Text Instructions
- Authors: Kunal Kathare, Ankit Dhiman, K Vikas Gowda, Siddharth Aravindan, Shubham Monga, Basavaraja Shanthappa Vandrotti, Lokesh R Boregowda,
- Abstract summary: Instructive3D is a novel LRM based model that integrates generation and fine-grained editing, through user text prompts, of 3D objects into a single model.
We find that Instructive3D produces superior 3D objects with the properties specified by the edit prompts.
- Score: 2.9575146209034853
- License:
- Abstract: Transformer based methods have enabled users to create, modify, and comprehend text and image data. Recently proposed Large Reconstruction Models (LRMs) further extend this by providing the ability to generate high-quality 3D models with the help of a single object image. These models, however, lack the ability to manipulate or edit the finer details, such as adding standard design patterns or changing the color and reflectance of the generated objects, thus lacking fine-grained control that may be very helpful in domains such as augmented reality, animation and gaming. Naively training LRMs for this purpose would require generating precisely edited images and 3D object pairs, which is computationally expensive. In this paper, we propose Instructive3D, a novel LRM based model that integrates generation and fine-grained editing, through user text prompts, of 3D objects into a single model. We accomplish this by adding an adapter that performs a diffusion process conditioned on a text prompt specifying edits in the triplane latent space representation of 3D object models. Our method does not require the generation of edited 3D objects. Additionally, Instructive3D allows us to perform geometrically consistent modifications, as the edits done through user-defined text prompts are applied to the triplane latent representation thus enhancing the versatility and precision of 3D objects generated. We compare the objects generated by Instructive3D and a baseline that first generates the 3D object meshes using a standard LRM model and then edits these 3D objects using text prompts when images are provided from the Objaverse LVIS dataset. We find that Instructive3D produces qualitatively superior 3D objects with the properties specified by the edit prompts.
Related papers
- Manipulating Vehicle 3D Shapes through Latent Space Editing [0.0]
This paper introduces a framework that employs a pre-trained regressor, enabling continuous, precise, attribute-specific modifications to vehicle 3D models.
Our method not only preserves the inherent identity of vehicle 3D objects, but also supports multi-attribute editing, allowing for extensive customization without compromising the model's structural integrity.
arXiv Detail & Related papers (2024-10-31T13:41:16Z) - Geometry Image Diffusion: Fast and Data-Efficient Text-to-3D with Image-Based Surface Representation [2.3213238782019316]
GIMDiffusion is a novel Text-to-3D model that utilizes geometry images to efficiently represent 3D shapes using 2D images.
We exploit the rich 2D priors of existing Text-to-Image models such as Stable Diffusion.
In short, GIMDiffusion enables the generation of 3D assets at speeds comparable to current Text-to-Image models.
arXiv Detail & Related papers (2024-09-05T17:21:54Z) - DragGaussian: Enabling Drag-style Manipulation on 3D Gaussian Representation [57.406031264184584]
DragGaussian is a 3D object drag-editing framework based on 3D Gaussian Splatting.
Our contributions include the introduction of a new task, the development of DragGaussian for interactive point-based 3D editing, and comprehensive validation of its effectiveness through qualitative and quantitative experiments.
arXiv Detail & Related papers (2024-05-09T14:34:05Z) - Image Sculpting: Precise Object Editing with 3D Geometry Control [33.9777412846583]
Image Sculpting is a new framework for editing 2D images by incorporating tools from 3D geometry and graphics.
It supports precise, quantifiable, and physically-plausible editing options such as pose editing, rotation, translation, 3D composition, carving, and serial addition.
arXiv Detail & Related papers (2024-01-02T18:59:35Z) - IPDreamer: Appearance-Controllable 3D Object Generation with Complex Image Prompts [90.49024750432139]
We present IPDreamer, a novel method that captures intricate appearance features from complex $textbfI$mage $textbfP$rompts and aligns the synthesized 3D object with these extracted features.
Our experiments demonstrate that IPDreamer consistently generates high-quality 3D objects that align with both the textual and complex image prompts.
arXiv Detail & Related papers (2023-10-09T03:11:08Z) - Directional Texture Editing for 3D Models [51.31499400557996]
ITEM3D is designed for automatic textbf3D object editing according to the text textbfInstructions.
Leveraging the diffusion models and the differentiable rendering, ITEM3D takes the rendered images as the bridge of text and 3D representation.
arXiv Detail & Related papers (2023-09-26T12:01:13Z) - Articulated 3D Head Avatar Generation using Text-to-Image Diffusion
Models [107.84324544272481]
The ability to generate diverse 3D articulated head avatars is vital to a plethora of applications, including augmented reality, cinematography, and education.
Recent work on text-guided 3D object generation has shown great promise in addressing these needs.
We show that our diffusion-based articulated head avatars outperform state-of-the-art approaches for this task.
arXiv Detail & Related papers (2023-07-10T19:15:32Z) - TAPS3D: Text-Guided 3D Textured Shape Generation from Pseudo Supervision [114.56048848216254]
We present a novel framework, TAPS3D, to train a text-guided 3D shape generator with pseudo captions.
Based on rendered 2D images, we retrieve relevant words from the CLIP vocabulary and construct pseudo captions using templates.
Our constructed captions provide high-level semantic supervision for generated 3D shapes.
arXiv Detail & Related papers (2023-03-23T13:53:16Z) - 3D-TOGO: Towards Text-Guided Cross-Category 3D Object Generation [107.46972849241168]
3D-TOGO model generates 3D objects in the form of the neural radiance field with good texture.
Experiments on the largest 3D object dataset (i.e., ABO) are conducted to verify that 3D-TOGO can better generate high-quality 3D objects.
arXiv Detail & Related papers (2022-12-02T11:31:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.