A Digital Shadow for Modeling, Studying and Preventing Urban Crime
- URL: http://arxiv.org/abs/2501.04435v1
- Date: Wed, 08 Jan 2025 11:31:39 GMT
- Title: A Digital Shadow for Modeling, Studying and Preventing Urban Crime
- Authors: Juan Palma-Borda, Eduardo Guzmán, María-Victoria Belmonte,
- Abstract summary: Around 80 percent of the world's population lives in countries with high levels of criminality.
This paper presents the development and validation of a digital shadow platform for modeling and simulating urban crime.
- Score: 0.0
- License:
- Abstract: Crime is one of the greatest threats to urban security. Around 80 percent of the world's population lives in countries with high levels of criminality. Most of the crimes committed in the cities take place in their urban environments. This paper presents the development and validation of a digital shadow platform for modeling and simulating urban crime. This digital shadow has been constructed using data-driven agent-based modeling and simulation techniques, which are suitable for capturing dynamic interactions among individuals and with their environment. Our approach transforms and integrates well-known criminological theories and the expert knowledge of law enforcement agencies (LEA), policy makers, and other stakeholders under a theoretical model, which is in turn combined with real crime, spatial (cartographic) and socio-economic data into an urban model characterizing the daily behavior of citizens. The digital shadow has also been instantiated for the city of Malaga, for which we had over 300,000 complaints available. This instance has been calibrated with those complaints and other geographic and socio-economic information of the city. To the best of our knowledge, our digital shadow is the first for large urban areas that has been calibrated with a large dataset of real crime reports and with an accurate representation of the urban environment. The performance indicators of the model after being calibrated, in terms of the metrics widely used in predictive policing, suggest that our simulated crime generation matches the general pattern of crime in the city according to historical data. Our digital shadow platform could be an interesting tool for modeling and predicting criminal behavior in an urban environment on a daily basis and, thus, a useful tool for policy makers, criminologists, sociologists, LEAs, etc. to study and prevent urban crime.
Related papers
- Eyes on the Streets: Leveraging Street-Level Imaging to Model Urban Crime Dynamics [0.0]
This study addresses the challenge of urban safety in New York City by examining the relationship between the built environment and crime rates.
We aim to identify how urban landscapes correlate with crime statistics, focusing on the characteristics of street views and their association with crime rates.
arXiv Detail & Related papers (2024-04-15T21:33:45Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
This work addresses challenges in accessing and utilizing diverse urban spatial-temporal datasets.
We introduceatomic files, a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets.
We conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions.
arXiv Detail & Related papers (2023-08-24T16:20:00Z) - Spatial-Temporal Meta-path Guided Explainable Crime Prediction [40.03641583647572]
We present a Spatial-Temporal Metapath guided Explainable Crime prediction (STMEC) framework to capture dynamic patterns of crime behaviours.
We show the superiority of STMEC compared with other advancedtemporal models, especially in predicting felonies.
arXiv Detail & Related papers (2022-05-04T05:42:23Z) - Spatial-Temporal Hypergraph Self-Supervised Learning for Crime
Prediction [60.508960752148454]
This work proposes a Spatial-Temporal Hypergraph Self-Supervised Learning framework to tackle the label scarcity issue in crime prediction.
We propose the cross-region hypergraph structure learning to encode region-wise crime dependency under the entire urban space.
We also design the dual-stage self-supervised learning paradigm, to not only jointly capture local- and global-level spatial-temporal crime patterns, but also supplement the sparse crime representation by augmenting region self-discrimination.
arXiv Detail & Related papers (2022-04-18T23:46:01Z) - Spatial-Temporal Sequential Hypergraph Network for Crime Prediction [56.41899180029119]
We propose Spatial-Temporal Sequential Hypergraph Network (ST-SHN) to collectively encode complex crime spatial-temporal patterns.
In particular, to handle spatial-temporal dynamics under the long-range and global context, we design a graph-structured message passing architecture.
We conduct extensive experiments on two real-world datasets, showing that our proposed ST-SHN framework can significantly improve the prediction performance.
arXiv Detail & Related papers (2022-01-07T12:46:50Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - The effect of differential victim crime reporting on predictive policing
systems [84.86615754515252]
We show how differential victim crime reporting rates can lead to outcome disparities in common crime hot spot prediction models.
Our results suggest that differential crime reporting rates can lead to a displacement of predicted hotspots from high crime but low reporting areas to high or medium crime and high reporting areas.
arXiv Detail & Related papers (2021-01-30T01:57:22Z) - Socio-economic, built environment, and mobility conditions associated
with crime: A study of multiple cities [9.78342936850961]
We propose a Bayesian model to explore how crime is related to socio-economic factors.
We find that the combined use of socio-economic conditions, mobility information and physical characteristics of the neighbourhood effectively explain the emergence of crime.
We show that the socio-ecological factors of neighbourhoods relate to crime very differently from one city to another.
arXiv Detail & Related papers (2020-04-13T08:36:59Z) - Forecasting Crime Using ARIMA Model [1.90365714903665]
We forecast crime rates in London borough by extracting large dataset of crime in London and predicted number of crimes in future.
A real dataset of crimes reported by London police collected from its website and other resources.
Data extraction (DE), data processing (DP) of unstructured data, visualizing model in IBM SPSS.
arXiv Detail & Related papers (2020-03-18T01:32:55Z) - Exploring Spatio-Temporal and Cross-Type Correlations for Crime
Prediction [48.1813701535167]
We perform crime prediction exploiting the cross-type and-temporal correlations of urban crimes.
We propose a coherent framework to mathematically model these correlations for crime prediction.
Further experiments have been conducted to understand the importance of different correlations in crime prediction.
arXiv Detail & Related papers (2020-01-20T00:34:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.