RSAR: Restricted State Angle Resolver and Rotated SAR Benchmark
- URL: http://arxiv.org/abs/2501.04440v1
- Date: Wed, 08 Jan 2025 11:41:47 GMT
- Title: RSAR: Restricted State Angle Resolver and Rotated SAR Benchmark
- Authors: Xin Zhang, Xue Yang, Yuxuan Li, Jian Yang, Ming-Ming Cheng, Xiang Li,
- Abstract summary: We introduce the Unit Cycle Resolver, which incorporates a unit circle constraint loss to improve angle prediction accuracy.
Our approach can effectively improve the performance of existing state-of-the-art weakly supervised methods.
With the aid of UCR, we further annotate and introduce RSAR, the largest multi-class rotated SAR object detection dataset to date.
- Score: 61.987291551925516
- License:
- Abstract: Rotated object detection has made significant progress in the optical remote sensing. However, advancements in the Synthetic Aperture Radar (SAR) field are laggard behind, primarily due to the absence of a large-scale dataset. Annotating such a dataset is inefficient and costly. A promising solution is to employ a weakly supervised model (e.g., trained with available horizontal boxes only) to generate pseudo-rotated boxes for reference before manual calibration. Unfortunately, the existing weakly supervised models exhibit limited accuracy in predicting the object's angle. Previous works attempt to enhance angle prediction by using angle resolvers that decouple angles into cosine and sine encodings. In this work, we first reevaluate these resolvers from a unified perspective of dimension mapping and expose that they share the same shortcomings: these methods overlook the unit cycle constraint inherent in these encodings, easily leading to prediction biases. To address this issue, we propose the Unit Cycle Resolver, which incorporates a unit circle constraint loss to improve angle prediction accuracy. Our approach can effectively improve the performance of existing state-of-the-art weakly supervised methods and even surpasses fully supervised models on existing optical benchmarks (i.e., DOTA-v1.0 dataset). With the aid of UCR, we further annotate and introduce RSAR, the largest multi-class rotated SAR object detection dataset to date. Extensive experiments on both RSAR and optical datasets demonstrate that our UCR enhances angle prediction accuracy. Our dataset and code can be found at: https://github.com/zhasion/RSAR.
Related papers
- Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - Multi-Grained Angle Representation for Remote Sensing Object Detection [6.950513073141904]
A new Arbitrary-oriented object detection (AOOD) method, consisting of coarse-grained angle classification (CAC) and fine-grained angle regression (FAR), is proposed.
CAC avoids the ambiguity of angle prediction by discrete angular encoding (DAE) and reduces complexity by coarsening the granularity of DAE.
FAR is developed to refine the angle prediction with much lower costs than narrowing the granularity of DAE.
An Intersection over Union (IoU) aware FAR-Loss (IFL) is designed to improve accuracy of angle prediction using an adaptive re-weighting mechanism guided by I
arXiv Detail & Related papers (2022-09-07T02:08:50Z) - Anchor-free Oriented Proposal Generator for Object Detection [59.54125119453818]
Oriented object detection is a practical and challenging task in remote sensing image interpretation.
Nowadays, oriented detectors mostly use horizontal boxes as intermedium to derive oriented boxes from them.
We propose a novel Anchor-free Oriented Proposal Generator (AOPG) that abandons the horizontal boxes-related operations from the network architecture.
arXiv Detail & Related papers (2021-10-05T10:45:51Z) - DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images [11.45718985586972]
We propose a dense anchor-free rotated object detector (DARDet) for rotated object detection in aerial images.
Our DARDet directly predicts five parameters of rotated boxes at each foreground pixel of feature maps.
Our method achieves state-of-the-art performance on three commonly used aerial objects datasets.
arXiv Detail & Related papers (2021-10-03T15:28:14Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z) - On the Arbitrary-Oriented Object Detection: Classification based
Approaches Revisited [94.5455251250471]
We first show that the boundary problem suffered in existing dominant regression-based rotation detectors, is caused by angular periodicity or corner ordering.
We transform the angular prediction task from a regression problem to a classification one.
For the resulting circularly distributed angle classification problem, we first devise a Circular Smooth Label technique to handle the periodicity of angle and increase the error tolerance to adjacent angles.
arXiv Detail & Related papers (2020-03-12T03:23:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.