HypeRL: Parameter-Informed Reinforcement Learning for Parametric PDEs
- URL: http://arxiv.org/abs/2501.04538v1
- Date: Wed, 08 Jan 2025 14:38:03 GMT
- Title: HypeRL: Parameter-Informed Reinforcement Learning for Parametric PDEs
- Authors: Nicolò Botteghi, Stefania Fresca, Mengwu Guo, Andrea Manzoni,
- Abstract summary: We devise a new, general-purpose reinforcement learning strategy for the optimal control of PDEs.
HypeRL aims at approximating the optimal control policy directly.
We validate the proposed approach on two PDE-constrained optimal control benchmarks.
- Score: 0.6249768559720122
- License:
- Abstract: In this work, we devise a new, general-purpose reinforcement learning strategy for the optimal control of parametric partial differential equations (PDEs). Such problems frequently arise in applied sciences and engineering and entail a significant complexity when control and/or state variables are distributed in high-dimensional space or depend on varying parameters. Traditional numerical methods, relying on either iterative minimization algorithms or dynamic programming, while reliable, often become computationally infeasible. Indeed, in either way, the optimal control problem must be solved for each instance of the parameters, and this is out of reach when dealing with high-dimensional time-dependent and parametric PDEs. In this paper, we propose HypeRL, a deep reinforcement learning (DRL) framework to overcome the limitations shown by traditional methods. HypeRL aims at approximating the optimal control policy directly. Specifically, we employ an actor-critic DRL approach to learn an optimal feedback control strategy that can generalize across the range of variation of the parameters. To effectively learn such optimal control laws, encoding the parameter information into the DRL policy and value function neural networks (NNs) is essential. To do so, HypeRL uses two additional NNs, often called hypernetworks, to learn the weights and biases of the value function and the policy NNs. We validate the proposed approach on two PDE-constrained optimal control benchmarks, namely a 1D Kuramoto-Sivashinsky equation and a 2D Navier-Stokes equations, by showing that the knowledge of the PDE parameters and how this information is encoded, i.e., via a hypernetwork, is an essential ingredient for learning parameter-dependent control policies that can generalize effectively to unseen scenarios and for improving the sample efficiency of such policies.
Related papers
- Q-SFT: Q-Learning for Language Models via Supervised Fine-Tuning [62.984693936073974]
Value-based reinforcement learning can learn effective policies for a wide range of multi-turn problems.
Current value-based RL methods have proven particularly challenging to scale to the setting of large language models.
We propose a novel offline RL algorithm that addresses these drawbacks, casting Q-learning as a modified supervised fine-tuning problem.
arXiv Detail & Related papers (2024-11-07T21:36:52Z) - Interpretable and Efficient Data-driven Discovery and Control of Distributed Systems [1.5195865840919498]
Reinforcement Learning (RL) has emerged as a promising control paradigm for systems with high-dimensional, nonlinear dynamics.
We propose a data-efficient, interpretable, and scalable framework for PDE control.
arXiv Detail & Related papers (2024-11-06T18:26:19Z) - GEPS: Boosting Generalization in Parametric PDE Neural Solvers through Adaptive Conditioning [14.939978372699084]
Data-driven approaches learn parametric PDEs by incorporating a very large variety of trajectories with varying PDE parameters.
GEPS is a simple adaptation mechanism to boost GEneralization in Pde solvers.
We demonstrate the versatility of our approach for both fully data-driven and for physics-aware neural solvers.
arXiv Detail & Related papers (2024-10-31T12:51:40Z) - Comparison of Model Predictive Control and Proximal Policy Optimization for a 1-DOF Helicopter System [0.7499722271664147]
This study conducts a comparative analysis of Model Predictive Control (MPC) and Proximal Policy Optimization (PPO), a Deep Reinforcement Learning (DRL) algorithm, applied to a Quanser Aero 2 system.
PPO excels in rise-time and adaptability, making it a promising approach for applications requiring rapid response and adaptability.
arXiv Detail & Related papers (2024-08-28T08:35:34Z) - Efficiently Training Deep-Learning Parametric Policies using Lagrangian Duality [55.06411438416805]
Constrained Markov Decision Processes (CMDPs) are critical in many high-stakes applications.
This paper introduces a novel approach, Two-Stage Deep Decision Rules (TS- DDR) to efficiently train parametric actor policies.
It is shown to enhance solution quality and to reduce computation times by several orders of magnitude when compared to current state-of-the-art methods.
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - Parametric PDE Control with Deep Reinforcement Learning and Differentiable L0-Sparse Polynomial Policies [0.5919433278490629]
Optimal control of parametric partial differential equations (PDEs) is crucial in many applications in engineering and science.
Deep reinforcement learning (DRL) has the potential to solve high-dimensional and complex control problems.
In this work, we leverage dictionary learning and differentiable L$_0$ regularization to learn sparse, robust, and interpretable control policies for PDEs.
arXiv Detail & Related papers (2024-03-22T15:06:31Z) - On Parametric Optimal Execution and Machine Learning Surrogates [3.077531983369872]
We investigate optimal order execution problems in discrete time with instantaneous price impact and resilience.
We develop a numerical algorithm based on dynamic programming and deep learning.
arXiv Detail & Related papers (2022-04-18T22:40:14Z) - Towards Deployment-Efficient Reinforcement Learning: Lower Bound and
Optimality [141.89413461337324]
Deployment efficiency is an important criterion for many real-world applications of reinforcement learning (RL)
We propose a theoretical formulation for deployment-efficient RL (DE-RL) from an "optimization with constraints" perspective.
arXiv Detail & Related papers (2022-02-14T01:31:46Z) - OptiDICE: Offline Policy Optimization via Stationary Distribution
Correction Estimation [59.469401906712555]
We present an offline reinforcement learning algorithm that prevents overestimation in a more principled way.
Our algorithm, OptiDICE, directly estimates the stationary distribution corrections of the optimal policy.
We show that OptiDICE performs competitively with the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-21T00:43:30Z) - Policy Information Capacity: Information-Theoretic Measure for Task
Complexity in Deep Reinforcement Learning [83.66080019570461]
We propose two environment-agnostic, algorithm-agnostic quantitative metrics for task difficulty.
We show that these metrics have higher correlations with normalized task solvability scores than a variety of alternatives.
These metrics can also be used for fast and compute-efficient optimizations of key design parameters.
arXiv Detail & Related papers (2021-03-23T17:49:50Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
Our framework takes advantage of the analogy between hyperparameter optimization and parameter learning in neural networks (RNNs)
It adapts a well-studied family of online learning algorithms for RNNs to tune hyperparameters and network parameters simultaneously.
This procedure yields systematically better generalization performance compared to standard methods, at a fraction of wallclock time.
arXiv Detail & Related papers (2021-02-15T19:36:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.