Boosting Salient Object Detection with Knowledge Distillated from Large Foundation Models
- URL: http://arxiv.org/abs/2501.04582v1
- Date: Wed, 08 Jan 2025 15:56:21 GMT
- Title: Boosting Salient Object Detection with Knowledge Distillated from Large Foundation Models
- Authors: Miaoyang He, Shuyong Gao, Tsui Qin Mok, Weifeng Ge, Wengqiang Zhang,
- Abstract summary: Salient Object Detection aims to identify and segment prominent regions within a scene.
Traditional models rely on manually annotated pseudo labels with precise pixel-level accuracy.
We develop a low-cost, high-precision annotation method to address the challenges.
- Score: 7.898092154590899
- License:
- Abstract: Salient Object Detection (SOD) aims to identify and segment prominent regions within a scene. Traditional models rely on manually annotated pseudo labels with precise pixel-level accuracy, which is time-consuming. We developed a low-cost, high-precision annotation method by leveraging large foundation models to address the challenges. Specifically, we use a weakly supervised approach to guide large models in generating pseudo-labels through textual prompts. Since large models do not effectively focus on the salient regions of images, we manually annotate a subset of text to fine-tune the model. Based on this approach, which enables precise and rapid generation of pseudo-labels, we introduce a new dataset, BDS-TR. Compared to the previous DUTS-TR dataset, BDS-TR is more prominent in scale and encompasses a wider variety of categories and scenes. This expansion will enhance our model's applicability across a broader range of scenarios and provide a more comprehensive foundational dataset for future SOD research. Additionally, we present an edge decoder based on dynamic upsampling, which focuses on object edges while gradually recovering image feature resolution. Comprehensive experiments on five benchmark datasets demonstrate that our method significantly outperforms state-of-the-art approaches and also surpasses several existing fully-supervised SOD methods. The code and results will be made available.
Related papers
- High-Precision Dichotomous Image Segmentation via Probing Diffusion Capacity [69.32473738284374]
We propose DiffDIS, a diffusion-driven segmentation model that taps into the potential of the pre-trained U-Net within diffusion models.
By leveraging the robust generalization capabilities and rich, versatile image representation prior to the SD models, we significantly reduce the inference time while preserving high-fidelity, detailed generation.
Experiments on the DIS5K dataset demonstrate the superiority of DiffDIS, achieving state-of-the-art results through a streamlined inference process.
arXiv Detail & Related papers (2024-10-14T02:49:23Z) - PGNeXt: High-Resolution Salient Object Detection via Pyramid Grafting Network [24.54269823691119]
We present an advanced study on more challenging high-resolution salient object detection (HRSOD) from both dataset and network framework perspectives.
To compensate for the lack of HRSOD dataset, we thoughtfully collect a large-scale high resolution salient object detection dataset, called UHRSD.
All the images are finely annotated in pixel-level, far exceeding previous low-resolution SOD datasets.
arXiv Detail & Related papers (2024-08-02T09:31:21Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable.
Although there have been a number of publicly available face forgery datasets, the forgery faces are mostly generated using GAN-based synthesis technology.
We propose a large-scale, diverse, and fine-grained high-fidelity dataset, namely GenFace, to facilitate the advancement of deepfake detection.
arXiv Detail & Related papers (2024-02-03T03:13:50Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Weakly Supervised Video Salient Object Detection via Point Supervision [18.952253968878356]
We propose a strong baseline model based on point supervision.
To infer saliency maps with temporal information, we mine inter-frame complementary information from short-term and long-term perspectives.
We label two point-supervised datasets, P-DAVIS and P-DAVSOD, by relabeling the DAVIS and the DAVSOD dataset.
arXiv Detail & Related papers (2022-07-15T03:31:15Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z) - Densely Nested Top-Down Flows for Salient Object Detection [137.74130900326833]
This paper revisits the role of top-down modeling in salient object detection.
It designs a novel densely nested top-down flows (DNTDF)-based framework.
In every stage of DNTDF, features from higher levels are read in via the progressive compression shortcut paths (PCSP)
arXiv Detail & Related papers (2021-02-18T03:14:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.