Enhancing Low-Cost Video Editing with Lightweight Adaptors and Temporal-Aware Inversion
- URL: http://arxiv.org/abs/2501.04606v1
- Date: Wed, 08 Jan 2025 16:41:31 GMT
- Title: Enhancing Low-Cost Video Editing with Lightweight Adaptors and Temporal-Aware Inversion
- Authors: Yangfan He, Sida Li, Kun Li, Jianhui Wang, Binxu Li, Tianyu Shi, Jun Yin, Miao Zhang, Xueqian Wang,
- Abstract summary: We propose a framework that integrates temporal-spatial and semantic consistency with Baliteral DDIM inversion.
Our method significantly improves perceptual quality, text-image alignment, and temporal coherence, as demonstrated on the MSR-VTT dataset.
- Score: 20.308013151046616
- License:
- Abstract: Recent advancements in text-to-image (T2I) generation using diffusion models have enabled cost-effective video-editing applications by leveraging pre-trained models, eliminating the need for resource-intensive training. However, the frame-independence of T2I generation often results in poor temporal consistency. Existing methods address this issue through temporal layer fine-tuning or inference-based temporal propagation, but these approaches suffer from high training costs or limited temporal coherence. To address these challenges, we propose a General and Efficient Adapter (GE-Adapter) that integrates temporal-spatial and semantic consistency with Baliteral DDIM inversion. This framework introduces three key components: (1) Frame-based Temporal Consistency Blocks (FTC Blocks) to capture frame-specific features and enforce smooth inter-frame transitions via temporally-aware loss functions; (2) Channel-dependent Spatial Consistency Blocks (SCD Blocks) employing bilateral filters to enhance spatial coherence by reducing noise and artifacts; and (3) Token-based Semantic Consistency Module (TSC Module) to maintain semantic alignment using shared prompt tokens and frame-specific tokens. Our method significantly improves perceptual quality, text-image alignment, and temporal coherence, as demonstrated on the MSR-VTT dataset. Additionally, it achieves enhanced fidelity and frame-to-frame coherence, offering a practical solution for T2V editing.
Related papers
- Temporal Feature Matters: A Framework for Diffusion Model Quantization [105.3033493564844]
Diffusion models rely on the time-step for the multi-round denoising.
We introduce a novel quantization framework that includes three strategies.
This framework preserves most of the temporal information and ensures high-quality end-to-end generation.
arXiv Detail & Related papers (2024-07-28T17:46:15Z) - COVE: Unleashing the Diffusion Feature Correspondence for Consistent Video Editing [57.76170824395532]
Video editing is an emerging task, in which most current methods adopt the pre-trained text-to-image (T2I) diffusion model to edit the source video.
We propose COrrespondence-guided Video Editing (COVE) to achieve high-quality and consistent video editing.
COVE can be seamlessly integrated into the pre-trained T2I diffusion model without the need for extra training or optimization.
arXiv Detail & Related papers (2024-06-13T06:27:13Z) - Low-Light Video Enhancement via Spatial-Temporal Consistent Illumination and Reflection Decomposition [68.6707284662443]
Low-Light Video Enhancement (LLVE) seeks to restore dynamic and static scenes plagued by severe invisibility and noise.
One critical aspect is formulating a consistency constraint specifically for temporal-spatial illumination and appearance enhanced versions.
We present an innovative video Retinex-based decomposition strategy that operates without the need for explicit supervision.
arXiv Detail & Related papers (2024-05-24T15:56:40Z) - Edit Temporal-Consistent Videos with Image Diffusion Model [49.88186997567138]
Large-scale text-to-image (T2I) diffusion models have been extended for text-guided video editing.
T achieves state-of-the-art performance in both video temporal consistency and video editing capability.
arXiv Detail & Related papers (2023-08-17T16:40:55Z) - RIGID: Recurrent GAN Inversion and Editing of Real Face Videos [73.97520691413006]
GAN inversion is indispensable for applying the powerful editability of GAN to real images.
Existing methods invert video frames individually often leading to undesired inconsistent results over time.
We propose a unified recurrent framework, named textbfRecurrent vtextbfIdeo textbfGAN textbfInversion and etextbfDiting (RIGID)
Our framework learns the inherent coherence between input frames in an end-to-end manner.
arXiv Detail & Related papers (2023-08-11T12:17:24Z) - Towards Consistent Video Editing with Text-to-Image Diffusion Models [10.340371518799444]
Existing works have advanced Text-to-Image (TTI) diffusion models for video editing in a one-shot learning manner.
These methods might produce results of unsatisfied consistency with text prompt as well as temporal sequence.
We propose a novel EI$2$ model towards textbfEnhancing vtextbfIdeo textbfEditing constextbfIstency of TTI-based frameworks.
arXiv Detail & Related papers (2023-05-27T10:03:36Z) - Transform-Equivariant Consistency Learning for Temporal Sentence
Grounding [66.10949751429781]
We introduce a novel Equivariant Consistency Regulation Learning framework to learn more discriminative representations for each video.
Our motivation comes from that the temporal boundary of the query-guided activity should be consistently predicted.
In particular, we devise a self-supervised consistency loss module to enhance the completeness and smoothness of the augmented video.
arXiv Detail & Related papers (2023-05-06T19:29:28Z) - STDAN: Deformable Attention Network for Space-Time Video
Super-Resolution [39.18399652834573]
We propose a deformable attention network called STDAN for STVSR.
First, we devise a long-short term feature (LSTFI) module, which is capable of abundant content from more neighboring input frames.
Second, we put forward a spatial-temporal deformable feature aggregation (STDFA) module, in which spatial and temporal contexts are adaptively captured and aggregated.
arXiv Detail & Related papers (2022-03-14T03:40:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.