Enhancing Virtual Try-On with Synthetic Pairs and Error-Aware Noise Scheduling
- URL: http://arxiv.org/abs/2501.04666v1
- Date: Wed, 08 Jan 2025 18:25:50 GMT
- Title: Enhancing Virtual Try-On with Synthetic Pairs and Error-Aware Noise Scheduling
- Authors: Nannan Li, Kevin J. Shih, Bryan A. Plummer,
- Abstract summary: We introduce a garment extraction model that generates (human, synthetic garment) pairs from a single image of a clothed individual.
We also propose an Error-Aware Refinement-based Schr"odinger Bridge (EARSB) that surgically targets localized generation errors.
In user studies, our model is preferred by the users in an average of 59% of cases.
- Score: 20.072689146353348
- License:
- Abstract: Given an isolated garment image in a canonical product view and a separate image of a person, the virtual try-on task aims to generate a new image of the person wearing the target garment. Prior virtual try-on works face two major challenges in achieving this goal: a) the paired (human, garment) training data has limited availability; b) generating textures on the human that perfectly match that of the prompted garment is difficult, often resulting in distorted text and faded textures. Our work explores ways to tackle these issues through both synthetic data as well as model refinement. We introduce a garment extraction model that generates (human, synthetic garment) pairs from a single image of a clothed individual. The synthetic pairs can then be used to augment the training of virtual try-on. We also propose an Error-Aware Refinement-based Schr\"odinger Bridge (EARSB) that surgically targets localized generation errors for correcting the output of a base virtual try-on model. To identify likely errors, we propose a weakly-supervised error classifier that localizes regions for refinement, subsequently augmenting the Schr\"odinger Bridge's noise schedule with its confidence heatmap. Experiments on VITON-HD and DressCode-Upper demonstrate that our synthetic data augmentation enhances the performance of prior work, while EARSB improves the overall image quality. In user studies, our model is preferred by the users in an average of 59% of cases.
Related papers
- TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models [8.158200403139196]
This paper introduces Virtual Try-Off (VTOFF), a novel task focused on generating standardized garment images from single photos of clothed individuals.
We present TryOffDiff, a model that adapts Stable Diffusion with SigLIP-based visual conditioning to ensure high fidelity and detail retention.
Our results highlight the potential of VTOFF to enhance product imagery in e-commerce applications, advance generative model evaluation, and inspire future work on high-fidelity reconstruction.
arXiv Detail & Related papers (2024-11-27T13:53:09Z) - Improving Virtual Try-On with Garment-focused Diffusion Models [91.95830983115474]
Diffusion models have led to the revolutionizing of generative modeling in numerous image synthesis tasks.
We shape a new Diffusion model, namely GarDiff, which triggers the garment-focused diffusion process.
Experiments on VITON-HD and DressCode datasets demonstrate the superiority of our GarDiff when compared to state-of-the-art VTON approaches.
arXiv Detail & Related papers (2024-09-12T17:55:11Z) - Texture-Preserving Diffusion Models for High-Fidelity Virtual Try-On [29.217423805933727]
Diffusion model-based approaches have recently become popular, as they are excellent at image synthesis tasks.
We propose an Texture-Preserving Diffusion (TPD) model for virtual try-on, which enhances the fidelity of the results.
Second, we propose a novel diffusion-based method that predicts a precise inpainting mask based on the person and reference garment images.
arXiv Detail & Related papers (2024-04-01T12:43:22Z) - Improving Diffusion Models for Authentic Virtual Try-on in the Wild [53.96244595495942]
This paper considers image-based virtual try-on, which renders an image of a person wearing a curated garment.
We propose a novel diffusion model that improves garment fidelity and generates authentic virtual try-on images.
We present a customization method using a pair of person-garment images, which significantly improves fidelity and authenticity.
arXiv Detail & Related papers (2024-03-08T08:12:18Z) - A Two-stage Personalized Virtual Try-on Framework with Shape Control and
Texture Guidance [7.302929117437442]
This paper proposes a brand new personalized virtual try-on model (PE-VITON), which uses the two stages (shape control and texture guidance) to decouple the clothing attributes.
The proposed model can effectively solve the problems of weak reduction of clothing folds, poor generation effect under complex human posture, blurred edges of clothing, and unclear texture styles in traditional try-on methods.
arXiv Detail & Related papers (2023-12-24T13:32:55Z) - StableVITON: Learning Semantic Correspondence with Latent Diffusion
Model for Virtual Try-On [35.227896906556026]
Given a clothing image and a person image, an image-based virtual try-on aims to generate a customized image that appears natural and accurately reflects the characteristics of the clothing image.
In this work, we aim to expand the applicability of the pre-trained diffusion model so that it can be utilized independently for the virtual try-on task.
Our proposed zero cross-attention blocks not only preserve the clothing details by learning the semantic correspondence but also generate high-fidelity images by utilizing the inherent knowledge of the pre-trained model in the warping process.
arXiv Detail & Related papers (2023-12-04T08:27:59Z) - CamDiff: Camouflage Image Augmentation via Diffusion Model [83.35960536063857]
CamDiff is a novel approach to synthesize salient objects in camouflaged scenes.
We leverage the latent diffusion model to synthesize salient objects in camouflaged scenes.
Our approach enables flexible editing and efficient large-scale dataset generation at a low cost.
arXiv Detail & Related papers (2023-04-11T19:37:47Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
We show how denoising diffusion models can be applied for high-fidelity person image synthesis.
Our results on two large-scale benchmarks and a user study demonstrate the photorealism of our proposed approach under challenging scenarios.
arXiv Detail & Related papers (2022-11-22T18:59:50Z) - Data Augmentation using Random Image Cropping for High-resolution
Virtual Try-On (VITON-CROP) [18.347532903864597]
VITON-CROP synthesizes images more robustly when integrated with random crop augmentation compared to the existing state-of-the-art virtual try-on models.
In the experiments, we demonstrate that VITON-CROP is superior to VITON-HD both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-11-16T07:40:16Z) - Cloth Interactive Transformer for Virtual Try-On [106.21605249649957]
We propose a novel two-stage cloth interactive transformer (CIT) method for the virtual try-on task.
In the first stage, we design a CIT matching block, aiming to precisely capture the long-range correlations between the cloth-agnostic person information and the in-shop cloth information.
In the second stage, we put forth a CIT reasoning block for establishing global mutual interactive dependencies among person representation, the warped clothing item, and the corresponding warped cloth mask.
arXiv Detail & Related papers (2021-04-12T14:45:32Z) - You Only Need Adversarial Supervision for Semantic Image Synthesis [84.83711654797342]
We propose a novel, simplified GAN model, which needs only adversarial supervision to achieve high quality results.
We show that images synthesized by our model are more diverse and follow the color and texture of real images more closely.
arXiv Detail & Related papers (2020-12-08T23:00:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.