URSA: Understanding and Verifying Chain-of-thought Reasoning in Multimodal Mathematics
- URL: http://arxiv.org/abs/2501.04686v3
- Date: Wed, 12 Feb 2025 16:49:50 GMT
- Title: URSA: Understanding and Verifying Chain-of-thought Reasoning in Multimodal Mathematics
- Authors: Ruilin Luo, Zhuofan Zheng, Yifan Wang, Yiyao Yu, Xinzhe Ni, Zicheng Lin, Jin Zeng, Yujiu Yang,
- Abstract summary: Chain-of-Thought (CoT) reasoning is widely used to enhance the mathematical reasoning capabilities of large language models (LLMs)
In this work, we propose a novel framework that introduces System 2-style thinking to multimodal mathematical reasoning.
- Score: 25.308196207219613
- License:
- Abstract: Chain-of-Thought (CoT) reasoning is widely used to enhance the mathematical reasoning capabilities of large language models (LLMs). The introduction of process supervision for CoT trajectories has sparked discussions on improving test-time scaling, thereby unlocking the System 2-style thinking capabilities of these models. However, in multimodal mathematical reasoning, the scarcity of high-quality CoT training data has hindered existing models from achieving both deliberate reasoning and fine-grained verification. In this work, we propose a novel framework that introduces System 2-style thinking to multimodal mathematical reasoning. We introduce a three-module CoT data synthesis process that integrates CoT distillation, trajectory-format rewriting, and format unification. This process generates MMathCoT-1M, a high-quality CoT reasoning instruction fine-tuning dataset. Furthermore, we implement a dual-view trajectory labeling automation that targets both visual grounding fidelity and deductive chain validity, resulting in the DualMath-1.1M dataset. The URSA-8B model, trained on MMathCoT-1M, achieves new state-of-the-art (SOTA) performance among similarly sized multimodal LLMs on six popular reasoning benchmarks. Training URSA-8B further on the DualMath-1.1M dataset yields URSA-RM-8B, a verifier that enhances URSA-8B's test-time performance and surpasses strong closed-source multimodal MLLMs like GPT-4o. The model weights, training data, and code have been open-sourced: https://github.com/URSA-MATH/URSA-MATH.
Related papers
- TACO: Learning Multi-modal Action Models with Synthetic Chains-of-Thought-and-Action [103.5952731807559]
We present TACO, a family of multi-modal large action models designed to improve performance on complex, multi-step, and multi-modal tasks.
During inference, TACO produces chains-of-thought-and-action (CoTA), executes intermediate steps by invoking external tools such as OCR, depth estimation and calculator.
This dataset enables TACO to learn complex reasoning and action paths, surpassing existing models trained on instruction tuning data with only direct answers.
arXiv Detail & Related papers (2024-12-07T00:42:04Z) - Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization [65.64108848398696]
We introduce a preference optimization process to enhance the multimodal reasoning capabilities of MLLMs.
We develop a simple yet effective method, termed Mixed Preference Optimization (MPO), which boosts multimodal CoT performance.
Our model, InternVL2-8B-MPO, achieves an accuracy of 67.0 on MathVista, outperforming InternVL2-8B by 8.7 points and achieving performance comparable to the 10x larger InternVL2-76B.
arXiv Detail & Related papers (2024-11-15T18:59:27Z) - Qwen2.5-Math Technical Report: Toward Mathematical Expert Model via Self-Improvement [71.46993852662021]
We present a series of math-specific large language models: Qwen2.5-Math and Qwen2.5-Math-Instruct-1.5B/7B/72B.
Qwen2.5-Math-Instruct supports both Chinese and English, and possess advanced mathematical reasoning capabilities.
arXiv Detail & Related papers (2024-09-18T16:45:37Z) - InfinityMATH: A Scalable Instruction Tuning Dataset in Programmatic Mathematical Reasoning [13.728595670907136]
We introduce InfinityMATH, a scalable instruction tuning dataset for programmatic mathematical reasoning.
Fine-tuning experiments with open-source language and code models, such as Llama2 and CodeLlama, demonstrate the practical benefits of InfinityMATH.
arXiv Detail & Related papers (2024-08-09T08:18:20Z) - Skywork-Math: Data Scaling Laws for Mathematical Reasoning in Large Language Models -- The Story Goes On [55.449818944278526]
We introduce the Skywork-Math model series, supervised fine-tuned (SFT) on common 7B language models.
Skywork-Math 7B has achieved impressive accuracies of 51.2% on the competition-level MATH benchmark.
We provide several practical takeaways to enhance math reasoning abilities in LLMs for both research and industry applications.
arXiv Detail & Related papers (2024-07-11T09:56:51Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - DIMAT: Decentralized Iterative Merging-And-Training for Deep Learning Models [21.85879890198875]
Decentralized Iterative Merging-And-Training (DIMAT) is a novel decentralized deep learning algorithm.
We show that DIMAT attains faster and higher initial gain in accuracy with independent and identically distributed (IID) and non-IID data, incurring lower communication overhead.
This DIMAT paradigm presents a new opportunity for the future decentralized learning, enhancing its adaptability to real-world with sparse lightweight communication computation.
arXiv Detail & Related papers (2024-04-11T18:34:29Z) - How Do Humans Write Code? Large Models Do It the Same Way Too [14.954886191356342]
Program-of-Thought (PoT) replaces natural language-based Chain-of-Thought (CoT) as the most popular method in Large Language Models.
Using PoT introduces more reasoning errors, such as incorrect formulas or flawed logic, compared to CoT.
We propose Human-Think Language (HTL), which leverages a suite of strategies that help integrate PoT and CoT.
arXiv Detail & Related papers (2024-02-24T05:40:01Z) - MARIO: MAth Reasoning with code Interpreter Output -- A Reproducible
Pipeline [12.186691561822256]
We postulate that the inherent nature of large language models (LLMs) presents challenges in modeling mathematical reasoning.
This paper introduces a novel math dataset, enhanced with a capability to utilize a Python code interpreter.
We propose a tentative, easily replicable protocol for the fine-tuning of math-specific LLMs.
arXiv Detail & Related papers (2024-01-16T08:08:01Z) - Multimodal Chain-of-Thought Reasoning in Language Models [94.70184390935661]
We propose Multimodal-CoT that incorporates language (text) and vision (images) modalities into a two-stage framework.
Experimental results on ScienceQA and A-OKVQA benchmark datasets show the effectiveness of our proposed approach.
arXiv Detail & Related papers (2023-02-02T07:51:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.