Open Problems in Machine Unlearning for AI Safety
- URL: http://arxiv.org/abs/2501.04952v1
- Date: Thu, 09 Jan 2025 03:59:10 GMT
- Title: Open Problems in Machine Unlearning for AI Safety
- Authors: Fazl Barez, Tingchen Fu, Ameya Prabhu, Stephen Casper, Amartya Sanyal, Adel Bibi, Aidan O'Gara, Robert Kirk, Ben Bucknall, Tim Fist, Luke Ong, Philip Torr, Kwok-Yan Lam, Robert Trager, David Krueger, Sören Mindermann, José Hernandez-Orallo, Mor Geva, Yarin Gal,
- Abstract summary: Machine unlearning -- the ability to selectively forget or suppress specific types of knowledge -- has shown promise for privacy and data removal tasks.<n>In this paper, we identify key limitations that prevent unlearning from serving as a comprehensive solution for AI safety.
- Score: 61.43515658834902
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As AI systems become more capable, widely deployed, and increasingly autonomous in critical areas such as cybersecurity, biological research, and healthcare, ensuring their safety and alignment with human values is paramount. Machine unlearning -- the ability to selectively forget or suppress specific types of knowledge -- has shown promise for privacy and data removal tasks, which has been the primary focus of existing research. More recently, its potential application to AI safety has gained attention. In this paper, we identify key limitations that prevent unlearning from serving as a comprehensive solution for AI safety, particularly in managing dual-use knowledge in sensitive domains like cybersecurity and chemical, biological, radiological, and nuclear (CBRN) safety. In these contexts, information can be both beneficial and harmful, and models may combine seemingly harmless information for harmful purposes -- unlearning this information could strongly affect beneficial uses. We provide an overview of inherent constraints and open problems, including the broader side effects of unlearning dangerous knowledge, as well as previously unexplored tensions between unlearning and existing safety mechanisms. Finally, we investigate challenges related to evaluation, robustness, and the preservation of safety features during unlearning. By mapping these limitations and open challenges, we aim to guide future research toward realistic applications of unlearning within a broader AI safety framework, acknowledging its limitations and highlighting areas where alternative approaches may be required.
Related papers
- An Approach to Technical AGI Safety and Security [72.83728459135101]
We develop an approach to address the risk of harms consequential enough to significantly harm humanity.
We focus on technical approaches to misuse and misalignment.
We briefly outline how these ingredients could be combined to produce safety cases for AGI systems.
arXiv Detail & Related papers (2025-04-02T15:59:31Z) - AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement [73.0700818105842]
We introduce AISafetyLab, a unified framework and toolkit that integrates representative attack, defense, and evaluation methodologies for AI safety.
AISafetyLab features an intuitive interface that enables developers to seamlessly apply various techniques.
We conduct empirical studies on Vicuna, analyzing different attack and defense strategies to provide valuable insights into their comparative effectiveness.
arXiv Detail & Related papers (2025-02-24T02:11:52Z) - Ontology-Aware RAG for Improved Question-Answering in Cybersecurity Education [13.838970688067725]
AI-driven question-answering (QA) systems can actively manage uncertainty in cybersecurity problem-solving.<n>Large language models (LLMs) have gained prominence in AI-driven QA systems, offering advanced language understanding and user engagement.<n>We propose CyberRAG, an ontology-aware retrieval-augmented generation (RAG) approach for developing a reliable and safe QA system in cybersecurity education.
arXiv Detail & Related papers (2024-12-10T21:52:35Z) - Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? [59.96471873997733]
We propose an empirical foundation for developing more meaningful safety metrics and define AI safety in a machine learning research context.<n>We aim to provide a more rigorous framework for AI safety research, advancing the science of safety evaluations and clarifying the path towards measurable progress.
arXiv Detail & Related papers (2024-07-31T17:59:24Z) - Threats, Attacks, and Defenses in Machine Unlearning: A Survey [14.03428437751312]
Machine Unlearning (MU) has recently gained considerable attention due to its potential to achieve Safe AI.
This survey aims to fill the gap between the extensive number of studies on threats, attacks, and defenses in machine unlearning.
arXiv Detail & Related papers (2024-03-20T15:40:18Z) - When to Trust AI: Advances and Challenges for Certification of Neural
Networks [26.890905486708117]
Early adoption of AI technology for real-world applications has not been without problems.
This paper provides an overview of techniques that have been developed to ensure safety of AI decisions.
arXiv Detail & Related papers (2023-09-20T10:31:09Z) - New Challenges in Reinforcement Learning: A Survey of Security and
Privacy [26.706957408693363]
Reinforcement learning (RL) is one of the most important branches of AI.
RL has been widely applied in multiple areas, such as healthcare, data markets, autonomous driving, and robotics.
Some of these applications and systems have been shown to be vulnerable to security or privacy attacks.
arXiv Detail & Related papers (2022-12-31T12:30:43Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
The use of deep neural networks (DNNs) in safety-critical applications is challenging due to numerous model-inherent shortcomings.
In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged.
Our paper addresses both machine learning experts and safety engineers.
arXiv Detail & Related papers (2021-04-29T09:54:54Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.