CuRLA: Curriculum Learning Based Deep Reinforcement Learning for Autonomous Driving
- URL: http://arxiv.org/abs/2501.04982v1
- Date: Thu, 09 Jan 2025 05:45:03 GMT
- Title: CuRLA: Curriculum Learning Based Deep Reinforcement Learning for Autonomous Driving
- Authors: Bhargava Uppuluri, Anjel Patel, Neil Mehta, Sridhar Kamath, Pratyush Chakraborty,
- Abstract summary: Deep Reinforcement Learning (DRL) agents address this by learning from experience and maximizing rewards.
We propose a method that combines DRL with Curriculum Learning for autonomous driving.
- Score: 1.188383832081829
- License:
- Abstract: In autonomous driving, traditional Computer Vision (CV) agents often struggle in unfamiliar situations due to biases in the training data. Deep Reinforcement Learning (DRL) agents address this by learning from experience and maximizing rewards, which helps them adapt to dynamic environments. However, ensuring their generalization remains challenging, especially with static training environments. Additionally, DRL models lack transparency, making it difficult to guarantee safety in all scenarios, particularly those not seen during training. To tackle these issues, we propose a method that combines DRL with Curriculum Learning for autonomous driving. Our approach uses a Proximal Policy Optimization (PPO) agent and a Variational Autoencoder (VAE) to learn safe driving in the CARLA simulator. The agent is trained using two-fold curriculum learning, progressively increasing environment difficulty and incorporating a collision penalty in the reward function to promote safety. This method improves the agent's adaptability and reliability in complex environments, and understand the nuances of balancing multiple reward components from different feedback signals in a single scalar reward function. Keywords: Computer Vision, Deep Reinforcement Learning, Variational Autoencoder, Proximal Policy Optimization, Curriculum Learning, Autonomous Driving.
Related papers
- CIMRL: Combining IMitation and Reinforcement Learning for Safe Autonomous Driving [45.05135725542318]
IMitation and Reinforcement Learning (CIMRL) approach enables training driving policies in simulation through leveraging imitative motion priors and safety constraints.
By combining RL and imitation, we demonstrate our method achieves state-of-the-art results in closed loop simulation and real world driving benchmarks.
arXiv Detail & Related papers (2024-06-13T07:31:29Z) - Robust Driving Policy Learning with Guided Meta Reinforcement Learning [49.860391298275616]
We introduce an efficient method to train diverse driving policies for social vehicles as a single meta-policy.
By randomizing the interaction-based reward functions of social vehicles, we can generate diverse objectives and efficiently train the meta-policy.
We propose a training strategy to enhance the robustness of the ego vehicle's driving policy using the environment where social vehicles are controlled by the learned meta-policy.
arXiv Detail & Related papers (2023-07-19T17:42:36Z) - Rethinking Closed-loop Training for Autonomous Driving [82.61418945804544]
We present the first empirical study which analyzes the effects of different training benchmark designs on the success of learning agents.
We propose trajectory value learning (TRAVL), an RL-based driving agent that performs planning with multistep look-ahead.
Our experiments show that TRAVL can learn much faster and produce safer maneuvers compared to all the baselines.
arXiv Detail & Related papers (2023-06-27T17:58:39Z) - Comprehensive Training and Evaluation on Deep Reinforcement Learning for
Automated Driving in Various Simulated Driving Maneuvers [0.4241054493737716]
This study implements, evaluating, and comparing the two DRL algorithms, Deep Q-networks (DQN) and Trust Region Policy Optimization (TRPO)
Models trained on the designed ComplexRoads environment can adapt well to other driving maneuvers with promising overall performance.
arXiv Detail & Related papers (2023-06-20T11:41:01Z) - Risk-Aware Reward Shaping of Reinforcement Learning Agents for
Autonomous Driving [6.613838702441967]
This paper investigates how to use risk-aware reward shaping to leverage the training and test performance of RL agents in autonomous driving.
We propose additional reshaped reward terms that encourage exploration and penalize risky driving behaviors.
arXiv Detail & Related papers (2023-06-05T20:10:36Z) - Safety Correction from Baseline: Towards the Risk-aware Policy in
Robotics via Dual-agent Reinforcement Learning [64.11013095004786]
We propose a dual-agent safe reinforcement learning strategy consisting of a baseline and a safe agent.
Such a decoupled framework enables high flexibility, data efficiency and risk-awareness for RL-based control.
The proposed method outperforms the state-of-the-art safe RL algorithms on difficult robot locomotion and manipulation tasks.
arXiv Detail & Related papers (2022-12-14T03:11:25Z) - Automatically Learning Fallback Strategies with Model-Free Reinforcement
Learning in Safety-Critical Driving Scenarios [9.761912672523977]
We present a principled approach for a model-free Reinforcement Learning (RL) agent to capture multiple modes of behaviour in an environment.
We introduce an extra pseudo-reward term to the reward model, to encourage exploration to areas of state-space different from areas privileged by the optimal policy.
We show that we are able to learn useful policies that would have otherwise been missed out on during training, and unavailable to use when executing the control algorithm.
arXiv Detail & Related papers (2022-04-11T15:34:49Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - Building Safer Autonomous Agents by Leveraging Risky Driving Behavior
Knowledge [1.52292571922932]
This study focuses on creating risk prone scenarios with heavy traffic and unexpected random behavior for creating better model-free learning agents.
We generate multiple autonomous driving scenarios by creating new custom Markov Decision Process (MDP) environment iterations in highway-env simulation package.
We train model free learning agents with supplement information of risk prone driving scenarios and compare their performance with baseline agents.
arXiv Detail & Related papers (2021-03-16T23:39:33Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
Reinforcement learning (RL) in real-world safety-critical target settings like urban driving is hazardous.
We propose a "safety-critical adaptation" task setting: an agent first trains in non-safety-critical "source" environments.
We propose a solution approach, CARL, that builds on the intuition that prior experience in diverse environments equips an agent to estimate risk.
arXiv Detail & Related papers (2020-08-15T01:40:59Z) - Safe Reinforcement Learning via Curriculum Induction [94.67835258431202]
In safety-critical applications, autonomous agents may need to learn in an environment where mistakes can be very costly.
Existing safe reinforcement learning methods make an agent rely on priors that let it avoid dangerous situations.
This paper presents an alternative approach inspired by human teaching, where an agent learns under the supervision of an automatic instructor.
arXiv Detail & Related papers (2020-06-22T10:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.