GiNet: Integrating Sequential and Context-Aware Learning for Battery Capacity Prediction
- URL: http://arxiv.org/abs/2501.04997v1
- Date: Thu, 09 Jan 2025 06:26:28 GMT
- Title: GiNet: Integrating Sequential and Context-Aware Learning for Battery Capacity Prediction
- Authors: Sara Sameer, Wei Zhang, Xin Lou, Qingyu Yan, Terence Goh, Yulin Gao,
- Abstract summary: We propose GiNet, a gated recurrent units enhanced Informer network, for predicting battery's capacity.
GiNet achieves 0.11 mean absolute error for predicting the battery capacity in a sequence of future time slots without knowing the historical battery capacity.
It also outperforms the latest algorithms significantly with 27% error reduction on average compared to Informer.
- Score: 6.289972392749257
- License:
- Abstract: The surging demand for batteries requires advanced battery management systems, where battery capacity modelling is a key functionality. In this paper, we aim to achieve accurate battery capacity prediction by learning from historical measurements of battery dynamics. We propose GiNet, a gated recurrent units enhanced Informer network, for predicting battery's capacity. The novelty and competitiveness of GiNet lies in its capability of capturing sequential and contextual information from raw battery data and reflecting the battery's complex behaviors with both temporal dynamics and long-term dependencies. We conducted an experimental study based on a publicly available dataset to showcase GiNet's strength of gaining a holistic understanding of battery behavior and predicting battery capacity accurately. GiNet achieves 0.11 mean absolute error for predicting the battery capacity in a sequence of future time slots without knowing the historical battery capacity. It also outperforms the latest algorithms significantly with 27% error reduction on average compared to Informer. The promising results highlight the importance of customized and optimized integration of algorithm and battery knowledge and shed light on other industry applications as well.
Related papers
- Transformer-based Capacity Prediction for Lithium-ion Batteries with Data Augmentation [0.0]
Lithium-ion batteries are pivotal to technological advancements in transportation, electronics, and clean energy storage.
Current methods for estimating the capacities fail to adequately account for long-term temporal dependencies of key variables.
We develop a transformer-based battery capacity prediction model that accounts for both long-term and short-term patterns in battery data.
arXiv Detail & Related papers (2024-07-22T20:21:40Z) - BatSort: Enhanced Battery Classification with Transfer Learning for Battery Sorting and Recycling [42.453194049264646]
We introduce a machine learning-based approach for battery-type classification and address the problem of data scarcity for the application.
We propose BatSort which applies transfer learning to utilize the existing knowledge optimized with large-scale datasets.
We conducted an experimental study and the results show that BatSort can achieve outstanding accuracy of 92.1% on average and up to 96.2%.
arXiv Detail & Related papers (2024-04-08T18:05:24Z) - Cycle Life Prediction for Lithium-ion Batteries: Machine Learning and More [0.0]
Batteries are dynamic systems with complicated nonlinear aging.
This tutorial begins with an overview of first-principles, machine learning, and hybrid battery models.
We highlight the challenges of machine learning models, motivating the incorporation of physics in hybrid modeling approaches.
arXiv Detail & Related papers (2024-04-05T12:05:20Z) - Prognosis of Multivariate Battery State of Performance and Health via
Transformers [0.0]
Batteries are an essential component in a deeply decarbonized future. Understanding battery performance and "useful life" as a function of design and use is of paramount importance.
We present a first step in that direction via deep transformer networks for the prediction of 28 battery state of health descriptors.
arXiv Detail & Related papers (2023-09-18T15:04:40Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - A Dynamic Feedforward Control Strategy for Energy-efficient Building
System Operation [59.56144813928478]
In current control strategies and optimization algorithms, most of them rely on receiving information from real-time feedback.
We propose an engineer-friendly control strategy framework that embeds dynamic prior knowledge from building system characteristics simultaneously for system control.
We tested it in a case for heating system control with typical control strategies, which shows our framework owns a further energy-saving potential of 15%.
arXiv Detail & Related papers (2023-01-23T09:07:07Z) - Enhanced Gaussian Process Dynamical Models with Knowledge Transfer for
Long-term Battery Degradation Forecasting [0.9208007322096533]
Predicting the end-of-life or remaining useful life of batteries in electric vehicles is a critical and challenging problem.
A number of algorithms have incorporated features that are available from data collected by battery management systems.
We develop a highly-accurate method that can overcome this limitation.
arXiv Detail & Related papers (2022-12-03T12:59:51Z) - Data Driven Prediction of Battery Cycle Life Before Capacity Degradation [0.0]
This paper utilizes the data and methods implemented by Kristen A. Severson, et al, to explore the methodologies that the research team used.
The fundamental effort is to find out if machine learning techniques may be trained to use early life cycle data in order to accurately predict battery capacity.
arXiv Detail & Related papers (2021-10-19T01:35:12Z) - Optimizing a domestic battery and solar photovoltaic system with deep
reinforcement learning [69.68068088508505]
A lowering in the cost of batteries and solar PV systems has led to a high uptake of solar battery home systems.
In this work, we use the deep deterministic policy algorithm to optimise the charging and discharging behaviour of a battery within such a system.
arXiv Detail & Related papers (2021-09-10T10:59:14Z) - State-of-Charge Estimation of a Li-Ion Battery using Deep Forward Neural
Networks [68.8204255655161]
We build a Deep Forward Network for a lithium-ion battery and its performance assessment.
The contribution of this work is to present a methodology of building a Deep Forward Network for a lithium-ion battery and its performance assessment.
arXiv Detail & Related papers (2020-09-20T23:47:11Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.