Consistent Flow Distillation for Text-to-3D Generation
- URL: http://arxiv.org/abs/2501.05445v1
- Date: Thu, 09 Jan 2025 18:56:05 GMT
- Title: Consistent Flow Distillation for Text-to-3D Generation
- Authors: Runjie Yan, Yinbo Chen, Xiaolong Wang,
- Abstract summary: Score Distillation Sampling (SDS) has made significant strides in distilling image-generative models for 3D generation.
However, its maximum-likelihood-seeking behavior often leads to degraded visual quality and diversity, limiting its effectiveness in 3D applications.
We propose Consistent Flow Distillation (CFD), which addresses these limitations.
- Score: 14.150490171643034
- License:
- Abstract: Score Distillation Sampling (SDS) has made significant strides in distilling image-generative models for 3D generation. However, its maximum-likelihood-seeking behavior often leads to degraded visual quality and diversity, limiting its effectiveness in 3D applications. In this work, we propose Consistent Flow Distillation (CFD), which addresses these limitations. We begin by leveraging the gradient of the diffusion ODE or SDE sampling process to guide the 3D generation. From the gradient-based sampling perspective, we find that the consistency of 2D image flows across different viewpoints is important for high-quality 3D generation. To achieve this, we introduce multi-view consistent Gaussian noise on the 3D object, which can be rendered from various viewpoints to compute the flow gradient. Our experiments demonstrate that CFD, through consistent flows, significantly outperforms previous methods in text-to-3D generation.
Related papers
- F3D-Gaus: Feed-forward 3D-aware Generation on ImageNet with Cycle-Consistent Gaussian Splatting [35.625593119642424]
This paper tackles the problem of generalizable 3D-aware generation from monocular datasets.
We propose a novel feed-forward pipeline based on pixel-aligned Gaussian Splatting.
We also introduce a self-supervised cycle-consistent constraint to enforce cross-view consistency in the learned 3D representation.
arXiv Detail & Related papers (2025-01-12T04:44:44Z) - DSplats: 3D Generation by Denoising Splats-Based Multiview Diffusion Models [67.50989119438508]
We introduce DSplats, a novel method that directly denoises multiview images using Gaussian-based Reconstructors to produce realistic 3D assets.
Our experiments demonstrate that DSplats not only produces high-quality, spatially consistent outputs, but also sets a new standard in single-image to 3D reconstruction.
arXiv Detail & Related papers (2024-12-11T07:32:17Z) - GaussianAnything: Interactive Point Cloud Latent Diffusion for 3D Generation [75.39457097832113]
This paper introduces a novel 3D generation framework, offering scalable, high-quality 3D generation with an interactive Point Cloud-structured Latent space.
Our framework employs a Variational Autoencoder with multi-view posed RGB-D(epth)-N(ormal) renderings as input, using a unique latent space design that preserves 3D shape information.
The proposed method, GaussianAnything, supports multi-modal conditional 3D generation, allowing for point cloud, caption, and single/multi-view image inputs.
arXiv Detail & Related papers (2024-11-12T18:59:32Z) - FlowDreamer: Exploring High Fidelity Text-to-3D Generation via Rectified Flow [17.919092916953183]
We propose a novel framework, named FlowDreamer, which yields high fidelity results with richer textual details and faster convergence.
Key insight is to leverage the coupling and reversible properties of the rectified flow model to search for the corresponding noise.
We introduce a novel Unique Matching Couple (UCM) loss, which guides the 3D model to optimize along the same trajectory.
arXiv Detail & Related papers (2024-08-09T11:40:20Z) - Geometry-Aware Score Distillation via 3D Consistent Noising and Gradient Consistency Modeling [31.945761751215134]
We introduce 3D consistent noising, geometry-based gradient warping and novel gradient consistency loss.
We successfully address the geometric inconsistency problems in text-to-3D generation task with minimal cost and being compatible with existing score distillation-based models.
arXiv Detail & Related papers (2024-06-24T14:58:17Z) - VividDreamer: Towards High-Fidelity and Efficient Text-to-3D Generation [69.68568248073747]
We propose Pose-dependent Consistency Distillation Sampling (PCDS), a novel yet efficient objective for diffusion-based 3D generation tasks.
PCDS builds the pose-dependent consistency function within diffusion trajectories, allowing to approximate true gradients through minimal sampling steps.
For efficient generation, we propose a coarse-to-fine optimization strategy, which first utilizes 1-step PCDS to create the basic structure of 3D objects, and then gradually increases PCDS steps to generate fine-grained details.
arXiv Detail & Related papers (2024-06-21T08:21:52Z) - LN3Diff: Scalable Latent Neural Fields Diffusion for Speedy 3D Generation [73.36690511083894]
This paper introduces a novel framework called LN3Diff to address a unified 3D diffusion pipeline.
Our approach harnesses a 3D-aware architecture and variational autoencoder to encode the input image into a structured, compact, and 3D latent space.
It achieves state-of-the-art performance on ShapeNet for 3D generation and demonstrates superior performance in monocular 3D reconstruction and conditional 3D generation.
arXiv Detail & Related papers (2024-03-18T17:54:34Z) - Consistent3D: Towards Consistent High-Fidelity Text-to-3D Generation with Deterministic Sampling Prior [87.55592645191122]
Score distillation sampling (SDS) and its variants have greatly boosted the development of text-to-3D generation, but are vulnerable to geometry collapse and poor textures yet.
We propose a novel and effective "Consistent3D" method that explores the ODE deterministic sampling prior for text-to-3D generation.
Experimental results show the efficacy of our Consistent3D in generating high-fidelity and diverse 3D objects and large-scale scenes.
arXiv Detail & Related papers (2024-01-17T08:32:07Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
We present StableDreamer, a methodology incorporating three advances.
First, we formalize the equivalence of the SDS generative prior and a simple supervised L2 reconstruction loss.
Second, our analysis shows that while image-space diffusion contributes to geometric precision, latent-space diffusion is crucial for vivid color rendition.
arXiv Detail & Related papers (2023-12-02T02:27:58Z) - Sparse3D: Distilling Multiview-Consistent Diffusion for Object
Reconstruction from Sparse Views [47.215089338101066]
We present Sparse3D, a novel 3D reconstruction method tailored for sparse view inputs.
Our approach distills robust priors from a multiview-consistent diffusion model to refine a neural radiance field.
By tapping into 2D priors from powerful image diffusion models, our integrated model consistently delivers high-quality results.
arXiv Detail & Related papers (2023-08-27T11:52:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.