The Future of AI: Exploring the Potential of Large Concept Models
- URL: http://arxiv.org/abs/2501.05487v1
- Date: Wed, 08 Jan 2025 18:18:37 GMT
- Title: The Future of AI: Exploring the Potential of Large Concept Models
- Authors: Hussain Ahmad, Diksha Goel,
- Abstract summary: Generative AI has marked a pivotal era, with the term Large Language Models (LLMs) becoming a ubiquitous part of daily life.<n>LLMs have demonstrated exceptional capabilities in tasks such as text summarization, code generation, and creative writing.<n>To address these limitations, Meta has introduced Large Concept Models (LCMs)<n> LCMs use concepts as foundational units of understanding, enabling more sophisticated semantic reasoning and context-aware decision-making.
- Score: 0.5755004576310334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of Artificial Intelligence (AI) continues to drive transformative innovations, with significant progress in conversational interfaces, autonomous vehicles, and intelligent content creation. Since the launch of ChatGPT in late 2022, the rise of Generative AI has marked a pivotal era, with the term Large Language Models (LLMs) becoming a ubiquitous part of daily life. LLMs have demonstrated exceptional capabilities in tasks such as text summarization, code generation, and creative writing. However, these models are inherently limited by their token-level processing, which restricts their ability to perform abstract reasoning, conceptual understanding, and efficient generation of long-form content. To address these limitations, Meta has introduced Large Concept Models (LCMs), representing a significant shift from traditional token-based frameworks. LCMs use concepts as foundational units of understanding, enabling more sophisticated semantic reasoning and context-aware decision-making. Given the limited academic research on this emerging technology, our study aims to bridge the knowledge gap by collecting, analyzing, and synthesizing existing grey literature to provide a comprehensive understanding of LCMs. Specifically, we (i) identify and describe the features that distinguish LCMs from LLMs, (ii) explore potential applications of LCMs across multiple domains, and (iii) propose future research directions and practical strategies to advance LCM development and adoption.
Related papers
- Modular Machine Learning: An Indispensable Path towards New-Generation Large Language Models [45.05285463251872]
We introduce a novel learning paradigm -- Modular Machine Learning (MML) -- as an essential approach toward new-generation large language models (LLMs)
MML decomposes the complex structure of LLMs into three interdependent components: modular representation, modular model, and modular reasoning.
We present a feasible implementation of MML-based LLMs via leveraging advanced techniques such as disentangled representation learning, neural architecture search and neuro-symbolic learning.
arXiv Detail & Related papers (2025-04-28T17:42:02Z) - A Survey on Post-training of Large Language Models [185.51013463503946]
Large Language Models (LLMs) have fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration.
These challenges necessitate advanced post-training language models (PoLMs) to address shortcomings, such as restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance.
This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms.
arXiv Detail & Related papers (2025-03-08T05:41:42Z) - A Survey on Large Language Models with some Insights on their Capabilities and Limitations [0.3222802562733786]
Large Language Models (LLMs) exhibit remarkable performance across various language-related tasks.<n>LLMs have demonstrated emergent abilities extending beyond their core functions.<n>This paper explores the foundational components, scaling mechanisms, and architectural strategies that drive these capabilities.
arXiv Detail & Related papers (2025-01-03T21:04:49Z) - When Text Embedding Meets Large Language Model: A Comprehensive Survey [17.263184207651072]
Text embedding has become a foundational technology in natural language processing (NLP) during the deep learning era.<n>We categorize the interplay between large language models (LLMs) and text embedding into three overarching themes.<n>We highlight the unresolved challenges that persisted in the pre-LLM era with pre-trained language models (PLMs) and explore the emerging obstacles brought forth by LLMs.
arXiv Detail & Related papers (2024-12-12T10:50:26Z) - A Comprehensive Survey and Guide to Multimodal Large Language Models in Vision-Language Tasks [5.0453036768975075]
Large language models (MLLMs) integrate text, images, video and audio to enable AI systems for cross-modal understanding and generation.<n>Book examines prominent MLLM implementations while addressing key challenges in scalability, robustness, and cross-modal learning.<n>Concluding with a discussion of ethical considerations, responsible AI development, and future directions, this authoritative resource provides both theoretical frameworks and practical insights.
arXiv Detail & Related papers (2024-11-09T20:56:23Z) - Unlocking the Wisdom of Large Language Models: An Introduction to The Path to Artificial General Intelligence [2.5200794639628032]
Unlocking the Wisdom of Multi-LLM Collaborative Intelligence serves as an introduction to the full volume The Path to Artificial General Intelligence.
Through fourteen aphorisms, it distills the core principles of Multi-LLM Agent Collaborative Intelligence.
The booklet includes titles, abstracts, and introductions from each main chapter, along with the full content of the first two.
arXiv Detail & Related papers (2024-09-02T07:29:37Z) - Fine-tuning Multimodal Large Language Models for Product Bundling [53.01642741096356]
We introduce Bundle-MLLM, a novel framework that fine-tunes large language models (LLMs) through a hybrid item tokenization approach.
Specifically, we integrate textual, media, and relational data into a unified tokenization, introducing a soft separation token to distinguish between textual and non-textual tokens.
We propose a progressive optimization strategy that fine-tunes LLMs for disentangled objectives: 1) learning bundle patterns and 2) enhancing multimodal semantic understanding specific to product bundling.
arXiv Detail & Related papers (2024-07-16T13:30:14Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
Coding targets compressing and reconstructing data, and intelligence.
Recent trends demonstrate the potential homogeneity of these two fields.
We propose a novel problem of Coding for Intelligence from the category theory view.
arXiv Detail & Related papers (2024-07-01T07:05:44Z) - Multi-step Inference over Unstructured Data [2.169874047093392]
High-stakes decision-making tasks in fields such as medical, legal and finance require a level of precision, comprehensiveness, and logical consistency.
We have developed a neuro-symbolic AI platform to tackle these problems.
The platform integrates fine-tuned LLMs for knowledge extraction and alignment with a robust symbolic reasoning engine.
arXiv Detail & Related papers (2024-06-26T00:00:45Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
Large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation.
Retrieval-Augmented Generation (RAG) can offer reliable and up-to-date external knowledge.
RA-LLMs have emerged to harness external and authoritative knowledge bases, rather than relying on the model's internal knowledge.
arXiv Detail & Related papers (2024-05-10T02:48:45Z) - Recent Advances in Hate Speech Moderation: Multimodality and the Role of Large Models [52.24001776263608]
This comprehensive survey delves into the recent strides in HS moderation.
We highlight the burgeoning role of large language models (LLMs) and large multimodal models (LMMs)
We identify existing gaps in research, particularly in the context of underrepresented languages and cultures.
arXiv Detail & Related papers (2024-01-30T03:51:44Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
Multimodal Large Language Model (MLLM) represented by GPT-4V has been a new rising research hotspot.<n>This paper aims to trace and summarize the recent progress of MLLMs.
arXiv Detail & Related papers (2023-06-23T15:21:52Z) - MRKL Systems: A modular, neuro-symbolic architecture that combines large
language models, external knowledge sources and discrete reasoning [50.40151403246205]
Huge language models (LMs) have ushered in a new era for AI, serving as a gateway to natural-language-based knowledge tasks.
We define a flexible architecture with multiple neural models, complemented by discrete knowledge and reasoning modules.
We describe this neuro-symbolic architecture, dubbed the Modular Reasoning, Knowledge and Language (MRKL) system.
arXiv Detail & Related papers (2022-05-01T11:01:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.