Prediction-Assisted Online Distributed Deep Learning Workload Scheduling in GPU Clusters
- URL: http://arxiv.org/abs/2501.05563v1
- Date: Thu, 09 Jan 2025 20:19:01 GMT
- Title: Prediction-Assisted Online Distributed Deep Learning Workload Scheduling in GPU Clusters
- Authors: Ziyue Luo, Jia Liu, Myungjin Lee, Ness B. Shroff,
- Abstract summary: This paper proposes an adaptive shortest-remaining-processing-time-first (A-SRPT) scheduling algorithm.
By modeling each job as a graph corresponding to heterogeneous Deep Neural Network (DNN) models, A-SRPT strategically assigns jobs to the available GPU.
A-SRPT maps the complex scheduling problem into a single-machine instance, which is addressed optimally by a preemptive "shortest-remaining-processing-time-first" strategy.
- Score: 24.845122459974466
- License:
- Abstract: The recent explosive growth of deep learning (DL) models has necessitated a compelling need for efficient job scheduling for distributed deep learning training with mixed parallelisms (DDLwMP) in GPU clusters. This paper proposes an adaptive shortest-remaining-processing-time-first (A-SRPT) scheduling algorithm, a novel prediction-assisted online scheduling approach designed to mitigate the challenges associated with DL cluster scheduling. By modeling each job as a graph corresponding to heterogeneous Deep Neural Network (DNN) models and their associated distributed training configurations, A-SRPT strategically assigns jobs to the available GPUs, thereby minimizing inter-server communication overhead. Observing that most DDLwMP jobs recur, A-SRPT incorporates a random forest regression model to predict training iterations. Crucially, A-SRPT maps the complex scheduling problem into a single-machine instance, which is addressed optimally by a preemptive "shortest-remaining-processing-time-first" strategy. This optimized solution serves as a guide for actual job scheduling within the GPU clusters, leading to a theoretically provable competitive scheduling efficiency. We conduct extensive real-world testbed and simulation experiments to verify our proposed algorithms.
Related papers
- GPU Cluster Scheduling for Network-Sensitive Deep Learning [19.344426053952464]
We propose a novel GPU-cluster scheduler for distributed DL (DDL) workloads.
Our scheduler consists of three major components: (i) a classical delay scheduling algorithm to facilitate job placement and consolidation; (ii) a network-sensitive job preemption strategy; and (iii) an "auto-tuner" mechanism to optimize delay timers for effective delay scheduling.
arXiv Detail & Related papers (2024-01-29T19:06:08Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - RESPECT: Reinforcement Learning based Edge Scheduling on Pipelined Coral
Edge TPUs [12.952987240366781]
This work presents a reinforcement learning (RL) based scheduling framework, which learns the behaviors of optimal optimization algorithms.
RL generates near-optimal scheduling results with short solving runtime overhead.
Our framework has demonstrated up to $sim2.5times$ real-world on-chip runtime inference speedups over the commercial compiler.
arXiv Detail & Related papers (2023-04-10T17:22:12Z) - Partitioning Distributed Compute Jobs with Reinforcement Learning and
Graph Neural Networks [58.720142291102135]
Large-scale machine learning models are bringing advances to a broad range of fields.
Many of these models are too large to be trained on a single machine, and must be distributed across multiple devices.
We show that maximum parallelisation is sub-optimal in relation to user-critical metrics such as throughput and blocking rate.
arXiv Detail & Related papers (2023-01-31T17:41:07Z) - A Memetic Algorithm with Reinforcement Learning for Sociotechnical
Production Scheduling [0.0]
This article presents a memetic algorithm with applying deep reinforcement learning (DRL) to flexible job shop scheduling problems (DRC-FJSSP)
From research projects in industry, we recognize the need to consider flexible machines, flexible human workers, worker capabilities, setup and processing operations, material arrival times, complex job paths with parallel tasks for bill of material manufacturing, sequence-dependent setup times and (partially) automated tasks in human-machine-collaboration.
arXiv Detail & Related papers (2022-12-21T11:24:32Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Receptive Field-based Segmentation for Distributed CNN Inference
Acceleration in Collaborative Edge Computing [93.67044879636093]
We study inference acceleration using distributed convolutional neural networks (CNNs) in collaborative edge computing network.
We propose a novel collaborative edge computing using fused-layer parallelization to partition a CNN model into multiple blocks of convolutional layers.
arXiv Detail & Related papers (2022-07-22T18:38:11Z) - Decentralized Training of Foundation Models in Heterogeneous
Environments [77.47261769795992]
Training foundation models, such as GPT-3 and PaLM, can be extremely expensive.
We present the first study of training large foundation models with model parallelism in a decentralized regime over a heterogeneous network.
arXiv Detail & Related papers (2022-06-02T20:19:51Z) - DistIR: An Intermediate Representation and Simulator for Efficient
Neural Network Distribution [15.086401550425125]
DistIR is a representation for distributed computation that is tailored for efficient analyses.
We show how DistIR and its simulator enable fast grid searches over complex distribution spaces spanning up to 1000+ configurations.
arXiv Detail & Related papers (2021-11-09T21:32:51Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.