Watermarking Graph Neural Networks via Explanations for Ownership Protection
- URL: http://arxiv.org/abs/2501.05614v1
- Date: Thu, 09 Jan 2025 23:25:06 GMT
- Title: Watermarking Graph Neural Networks via Explanations for Ownership Protection
- Authors: Jane Downer, Ren Wang, Binghui Wang,
- Abstract summary: Graph Neural Networks (GNNs) are the mainstream method to learn pervasive graph data.
protecting GNNs from unauthorized use remains a challenge.
Watermarking, which embeds ownership information into a model, is a potential solution.
- Score: 13.93535590008316
- License:
- Abstract: Graph Neural Networks (GNNs) are the mainstream method to learn pervasive graph data and are widely deployed in industry, making their intellectual property valuable. However, protecting GNNs from unauthorized use remains a challenge. Watermarking, which embeds ownership information into a model, is a potential solution. However, existing watermarking methods have two key limitations: First, almost all of them focus on non-graph data, with watermarking GNNs for complex graph data largely unexplored. Second, the de facto backdoor-based watermarking methods pollute training data and induce ownership ambiguity through intentional misclassification. Our explanation-based watermarking inherits the strengths of backdoor-based methods (e.g., robust to watermark removal attacks), but avoids data pollution and eliminates intentional misclassification. In particular, our method learns to embed the watermark in GNN explanations such that this unique watermark is statistically distinct from other potential solutions, and ownership claims must show statistical significance to be verified. We theoretically prove that, even with full knowledge of our method, locating the watermark is an NP-hard problem. Empirically, our method manifests robustness to removal attacks like fine-tuning and pruning. By addressing these challenges, our approach marks a significant advancement in protecting GNN intellectual property.
Related papers
- GENIE: Watermarking Graph Neural Networks for Link Prediction [5.1323099412421636]
Graph Neural Networks (GNNs) have become invaluable intellectual property in graph-based machine learning.
Watermarking is a promising OD framework for Deep Neural Networks, but existing methods fail to generalize to GNNs due to the non-Euclidean nature of graph data.
In this paper, we propose GENIE, the first-ever scheme to watermark GNNs for Link Prediction (LP)
Our scheme is equipped with Dynamic Watermark Thresholding (DWT), ensuring high verification probability (>99.99%) while addressing practical issues in existing watermarking schemes.
arXiv Detail & Related papers (2024-06-07T10:12:01Z) - DeepEclipse: How to Break White-Box DNN-Watermarking Schemes [60.472676088146436]
We present obfuscation techniques that significantly differ from the existing white-box watermarking removal schemes.
DeepEclipse can evade watermark detection without prior knowledge of the underlying watermarking scheme.
Our evaluation reveals that DeepEclipse excels in breaking multiple white-box watermarking schemes.
arXiv Detail & Related papers (2024-03-06T10:24:47Z) - ClearMark: Intuitive and Robust Model Watermarking via Transposed Model
Training [50.77001916246691]
This paper introduces ClearMark, the first DNN watermarking method designed for intuitive human assessment.
ClearMark embeds visible watermarks, enabling human decision-making without rigid value thresholds.
It shows an 8,544-bit watermark capacity comparable to the strongest existing work.
arXiv Detail & Related papers (2023-10-25T08:16:55Z) - Safe and Robust Watermark Injection with a Single OoD Image [90.71804273115585]
Training a high-performance deep neural network requires large amounts of data and computational resources.
We propose a safe and robust backdoor-based watermark injection technique.
We induce random perturbation of model parameters during watermark injection to defend against common watermark removal attacks.
arXiv Detail & Related papers (2023-09-04T19:58:35Z) - On Function-Coupled Watermarks for Deep Neural Networks [15.478746926391146]
We propose a novel DNN watermarking solution that can effectively defend against watermark removal attacks.
Our key insight is to enhance the coupling of the watermark and model functionalities.
Results show a 100% watermark authentication success rate under aggressive watermark removal attacks.
arXiv Detail & Related papers (2023-02-08T05:55:16Z) - Untargeted Backdoor Watermark: Towards Harmless and Stealthy Dataset
Copyright Protection [69.59980270078067]
We explore the untargeted backdoor watermarking scheme, where the abnormal model behaviors are not deterministic.
We also discuss how to use the proposed untargeted backdoor watermark for dataset ownership verification.
arXiv Detail & Related papers (2022-09-27T12:56:56Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
The intellectual property (IP) of Deep neural networks (DNNs) can be easily stolen'' by surrogate model attack.
We propose a new watermarking methodology, namely structure consistency'', based on which a new deep structure-aligned model watermarking algorithm is designed.
arXiv Detail & Related papers (2021-08-05T04:27:15Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
We propose a novel watermark removal attack from a different perspective.
We design a simple yet powerful transformation algorithm by combining imperceptible pattern embedding and spatial-level transformations.
Our attack can bypass state-of-the-art watermarking solutions with very high success rates.
arXiv Detail & Related papers (2020-09-18T09:14:54Z) - Removing Backdoor-Based Watermarks in Neural Networks with Limited Data [26.050649487499626]
Trading deep models is highly demanded and lucrative nowadays.
naive trading schemes typically involve potential risks related to copyright and trustworthiness issues.
We propose a novel backdoor-based watermark removal framework using limited data, dubbed WILD.
arXiv Detail & Related papers (2020-08-02T06:25:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.