LPRnet: A self-supervised registration network for LiDAR and photogrammetric point clouds
- URL: http://arxiv.org/abs/2501.05669v1
- Date: Fri, 10 Jan 2025 02:36:37 GMT
- Title: LPRnet: A self-supervised registration network for LiDAR and photogrammetric point clouds
- Authors: Chen Wang, Yanfeng Gu, Xian Li,
- Abstract summary: LiDAR and photogrammetry are active and passive remote sensing techniques for point cloud acquisition, respectively.
Due to the fundamental differences in sensing mechanisms, spatial distributions and coordinate systems, their point clouds exhibit significant discrepancies in density, precision, noise, and overlap.
This paper proposes a self-supervised registration network based on a masked autoencoder, focusing on heterogeneous LiDAR and photogrammetric point clouds.
- Score: 38.42527849407057
- License:
- Abstract: LiDAR and photogrammetry are active and passive remote sensing techniques for point cloud acquisition, respectively, offering complementary advantages and heterogeneous. Due to the fundamental differences in sensing mechanisms, spatial distributions and coordinate systems, their point clouds exhibit significant discrepancies in density, precision, noise, and overlap. Coupled with the lack of ground truth for large-scale scenes, integrating the heterogeneous point clouds is a highly challenging task. This paper proposes a self-supervised registration network based on a masked autoencoder, focusing on heterogeneous LiDAR and photogrammetric point clouds. At its core, the method introduces a multi-scale masked training strategy to extract robust features from heterogeneous point clouds under self-supervision. To further enhance registration performance, a rotation-translation embedding module is designed to effectively capture the key features essential for accurate rigid transformations. Building upon the robust representations, a transformer-based architecture seamlessly integrates local and global features, fostering precise alignment across diverse point cloud datasets. The proposed method demonstrates strong feature extraction capabilities for both LiDAR and photogrammetric point clouds, addressing the challenges of acquiring ground truth at the scene level. Experiments conducted on two real-world datasets validate the effectiveness of the proposed method in solving heterogeneous point cloud registration problems.
Related papers
- Towards Fusing Point Cloud and Visual Representations for Imitation Learning [57.886331184389604]
We propose FPV-Net, a novel imitation learning method that effectively combines the strengths of both point cloud and RGB modalities.
Our method conditions the point-cloud encoder on global and local image tokens using adaptive layer norm conditioning.
arXiv Detail & Related papers (2025-02-17T20:46:54Z) - A Consistency-Aware Spot-Guided Transformer for Versatile and Hierarchical Point Cloud Registration [9.609585217048664]
We develop a consistency-aware spot-guided Transformer (CAST)
CAST incorporates a spot-guided cross-attention module to avoid interfering with irrelevant areas.
A lightweight fine matching module for both sparse keypoints and dense features can estimate the transformation accurately.
arXiv Detail & Related papers (2024-10-14T08:48:25Z) - Distribution-aware Interactive Attention Network and Large-scale Cloud
Recognition Benchmark on FY-4A Satellite Image [24.09239785062109]
We develop a novel dataset for accurate cloud recognition.
We use domain adaptation methods to align 70,419 image-label pairs in terms of projection, temporal resolution, and spatial resolution.
We also introduce a Distribution-aware Interactive-Attention Network (DIAnet), which preserves pixel-level details through a high-resolution branch and a parallel cross-branch.
arXiv Detail & Related papers (2024-01-06T09:58:09Z) - CLiSA: A Hierarchical Hybrid Transformer Model using Orthogonal Cross
Attention for Satellite Image Cloud Segmentation [5.178465447325005]
Deep learning algorithms have emerged as promising approach to solve image segmentation problems.
In this paper, we introduce a deep-learning model for effective cloud mask generation named CLiSA - Cloud segmentation via Lipschitz Stable Attention network.
We demonstrate both qualitative and quantitative outcomes for multiple satellite image datasets including Landsat-8, Sentinel-2, and Cartosat-2s.
arXiv Detail & Related papers (2023-11-29T09:31:31Z) - Controllable Mesh Generation Through Sparse Latent Point Diffusion
Models [105.83595545314334]
We design a novel sparse latent point diffusion model for mesh generation.
Our key insight is to regard point clouds as an intermediate representation of meshes, and model the distribution of point clouds instead.
Our proposed sparse latent point diffusion model achieves superior performance in terms of generation quality and controllability.
arXiv Detail & Related papers (2023-03-14T14:25:29Z) - Data-driven Cloud Clustering via a Rotationally Invariant Autoencoder [10.660968055962325]
We describe an automated rotation-invariant cloud clustering (RICC) method.
It organizes cloud imagery within large datasets in an unsupervised fashion.
Results suggest that the resultant cloud clusters capture meaningful aspects of cloud physics.
arXiv Detail & Related papers (2021-03-08T16:45:14Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
It is expensive and tedious to obtain large scale paired sparse-canned point sets for training from real scanned sparse data.
We propose a self-supervised point cloud upsampling network, named SPU-Net, to capture the inherent upsampling patterns of points lying on the underlying object surface.
We conduct various experiments on both synthetic and real-scanned datasets, and the results demonstrate that we achieve comparable performance to the state-of-the-art supervised methods.
arXiv Detail & Related papers (2020-12-08T14:14:09Z) - ePointDA: An End-to-End Simulation-to-Real Domain Adaptation Framework
for LiDAR Point Cloud Segmentation [111.56730703473411]
Training deep neural networks (DNNs) on LiDAR data requires large-scale point-wise annotations.
Simulation-to-real domain adaptation (SRDA) trains a DNN using unlimited synthetic data with automatically generated labels.
ePointDA consists of three modules: self-supervised dropout noise rendering, statistics-invariant and spatially-adaptive feature alignment, and transferable segmentation learning.
arXiv Detail & Related papers (2020-09-07T23:46:08Z) - Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation
and Spatial Supervision [68.35777836993212]
We propose a Pseudo-LiDAR point cloud network to generate temporally and spatially high-quality point cloud sequences.
By exploiting the scene flow between point clouds, the proposed network is able to learn a more accurate representation of the 3D spatial motion relationship.
arXiv Detail & Related papers (2020-06-20T03:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.