Robust Counterfactual Explanations under Model Multiplicity Using Multi-Objective Optimization
- URL: http://arxiv.org/abs/2501.05795v3
- Date: Mon, 03 Feb 2025 06:07:24 GMT
- Title: Robust Counterfactual Explanations under Model Multiplicity Using Multi-Objective Optimization
- Authors: Keita Kinjo,
- Abstract summary: Counterfactual explanation (CE) is not robust when there are multiple machine-learning models with similar accuracy.
In this paper, we propose robust CEs that introduce a new viewpoint, and a method that uses multi-objective optimization to generate it.
We believe that this research can serve as a valuable foundation for various fields, including explainability in machine learning, decision-making, and action planning based on machine learning.
- Score: 0.8702432681310401
- License:
- Abstract: In recent years, explainability in machine learning has gained importance. In this context, counterfactual explanation (CE), which is an explanation method that uses examples, has attracted attention. However, it has been pointed out that CE is not robust when there are multiple machine-learning models with similar accuracy. These problems are important when using machine learning to make safe decisions. In this paper, we propose robust CEs that introduce a new viewpoint -- Pareto improvement -- and a method that uses multi-objective optimization to generate it. To evaluate the proposed method, we conducted experiments using both simulated and real data. The results demonstrate that the proposed method is both robust and practical. This study highlights the potential of ensuring robustness in decision-making by applying the concept of social welfare. We believe that this research can serve as a valuable foundation for various fields, including explainability in machine learning, decision-making, and action planning based on machine learning.
Related papers
- Causal Inference Tools for a Better Evaluation of Machine Learning [0.0]
We introduce key statistical methods such as Ordinary Least Squares (OLS) regression, Analysis of Variance (ANOVA) and logistic regression.
The document serves as a guide for researchers and practitioners, detailing how these techniques can provide deeper insights into model behavior, performance, and fairness.
arXiv Detail & Related papers (2024-10-02T10:03:29Z) - An effect analysis of the balancing techniques on the counterfactual explanations of student success prediction models [0.0]
One of the dominant research directions in learning analytics is predictive modeling of learners' success using various machine learning methods.
Several counterfactual generation methods hold much promise, but the features must be actionable and causal to be effective.
This paper analyzed the effectiveness of commonly used counterfactual generation methods, such as WhatIf Counterfactual Explanations, Multi-Objective Counterfactual Explanations, and Nearest Instance Counterfactual Explanations.
arXiv Detail & Related papers (2024-08-01T16:19:08Z) - Unified Explanations in Machine Learning Models: A Perturbation Approach [0.0]
Inconsistencies between XAI and modeling techniques can have the undesirable effect of casting doubt upon the efficacy of these explainability approaches.
We propose a systematic, perturbation-based analysis against a popular, model-agnostic method in XAI, SHapley Additive exPlanations (Shap)
We devise algorithms to generate relative feature importance in settings of dynamic inference amongst a suite of popular machine learning and deep learning methods, and metrics that allow us to quantify how well explanations generated under the static case hold.
arXiv Detail & Related papers (2024-05-30T16:04:35Z) - Self-consistent Validation for Machine Learning Electronic Structure [81.54661501506185]
Method integrates machine learning with self-consistent field methods to achieve both low validation cost and interpret-ability.
This, in turn, enables exploration of the model's ability with active learning and instills confidence in its integration into real-world studies.
arXiv Detail & Related papers (2024-02-15T18:41:35Z) - Diffusion-based Visual Counterfactual Explanations -- Towards Systematic
Quantitative Evaluation [64.0476282000118]
Latest methods for visual counterfactual explanations (VCE) harness the power of deep generative models to synthesize new examples of high-dimensional images of impressive quality.
It is currently difficult to compare the performance of these VCE methods as the evaluation procedures largely vary and often boil down to visual inspection of individual examples and small scale user studies.
We propose a framework for systematic, quantitative evaluation of the VCE methods and a minimal set of metrics to be used.
arXiv Detail & Related papers (2023-08-11T12:22:37Z) - Evaluating Machine Unlearning via Epistemic Uncertainty [78.27542864367821]
This work presents an evaluation of Machine Unlearning algorithms based on uncertainty.
This is the first definition of a general evaluation of our best knowledge.
arXiv Detail & Related papers (2022-08-23T09:37:31Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - A Weighted Solution to SVM Actionability and Interpretability [0.0]
Actionability is as important as interpretability or explainability of machine learning models, an ongoing and important research topic.
This paper finds a solution to the question of actionability on both linear and non-linear SVM models.
arXiv Detail & Related papers (2020-12-06T20:35:25Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.