AI-Driven Diabetic Retinopathy Screening: Multicentric Validation of AIDRSS in India
- URL: http://arxiv.org/abs/2501.05826v2
- Date: Mon, 13 Jan 2025 08:56:05 GMT
- Title: AI-Driven Diabetic Retinopathy Screening: Multicentric Validation of AIDRSS in India
- Authors: Amit Kr Dey, Pradeep Walia, Girish Somvanshi, Abrar Ali, Sagarnil Das, Pallabi Paul, Minakhi Ghosh,
- Abstract summary: Diabetic retinopathy (DR) is a major cause of vision loss, particularly in India, where access to retina specialists is limited in rural areas.
This study aims to evaluate the Artificial Intelligence-based Diabetic Retinopathy Screening System for DR detection and prevalence assessment.
- Score: 0.0
- License:
- Abstract: Purpose: Diabetic retinopathy (DR) is a major cause of vision loss, particularly in India, where access to retina specialists is limited in rural areas. This study aims to evaluate the Artificial Intelligence-based Diabetic Retinopathy Screening System (AIDRSS) for DR detection and prevalence assessment, addressing the growing need for scalable, automated screening solutions in resource-limited settings. Approach: A multicentric, cross-sectional study was conducted in Kolkata, India, involving 5,029 participants and 10,058 macula-centric retinal fundus images. The AIDRSS employed a deep learning algorithm with 50 million trainable parameters, integrated with Contrast Limited Adaptive Histogram Equalization (CLAHE) preprocessing for enhanced image quality. DR was graded using the International Clinical Diabetic Retinopathy (ICDR) Scale, categorizing disease into five stages (DR0 to DR4). Statistical metrics including sensitivity, specificity, and prevalence rates were evaluated against expert retina specialist assessments. Results: The prevalence of DR in the general population was 13.7%, rising to 38.2% among individuals with elevated random blood glucose levels. The AIDRSS achieved an overall sensitivity of 92%, specificity of 88%, and 100% sensitivity for detecting referable DR (DR3 and DR4). These results demonstrate the system's robust performance in accurately identifying and grading DR in a diverse population. Conclusions: AIDRSS provides a reliable, scalable solution for early DR detection in resource-constrained environments. Its integration of advanced AI techniques ensures high diagnostic accuracy, with potential to significantly reduce the burden of diabetes-related vision loss in underserved regions.
Related papers
- Enhancing Diabetic Retinopathy Detection with CNN-Based Models: A Comparative Study of UNET and Stacked UNET Architectures [0.0]
Diabetic Retinopathy DR is a severe complication of diabetes. Damaged or abnormal blood vessels can cause loss of vision.
The need for massive screening of a large population of diabetic patients has generated an interest in a computer-aided fully automatic diagnosis of DR.
Deep learning frameworks, particularly convolutional neural networks CNNs, have shown great interest and promise in detecting DR by analyzing retinal images.
arXiv Detail & Related papers (2024-11-02T14:02:45Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
This study presents an innovative method for Alzheimer's disease diagnosis using 3D MRI designed to enhance the explainability of model decisions.
Our approach adopts a soft attention mechanism, enabling 2D CNNs to extract volumetric representations.
With voxel-level precision, our method identified which specific areas are being paid attention to, identifying these predominant brain regions.
arXiv Detail & Related papers (2024-07-02T16:44:00Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
We organized a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022)
The challenge consists of three tasks: segmentation of DR lesions, image quality assessment and DR grading.
This paper presents a summary and analysis of the top-performing solutions and results for each task of the challenge.
arXiv Detail & Related papers (2023-04-05T12:04:55Z) - Performance of a deep learning system for detection of referable
diabetic retinopathy in real clinical settings [0.0]
RetCAD v.1.3.1 was developed to automatically detect referable diabetic retinopathy (DR)
Analysed the reduction of workload that can be released incorporating this artificial intelligence-based technology.
arXiv Detail & Related papers (2022-05-11T14:59:10Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate.
We propose a practical AI system that enables five subclassifications of GC pathology, which can be directly matched to general GC treatment guidance.
arXiv Detail & Related papers (2022-02-17T08:33:52Z) - Automated Detection and Diagnosis of Diabetic Retinopathy: A
Comprehensive Survey [0.0]
Diabetic Retinopathy (DR) is a leading cause of vision loss in the world.
With deep learning/machine learning it is possible to extract features from the images and detect the presence of DR.
This review covers the literature dealing with AI approaches to DR that have been published in the open literature over a five year span.
arXiv Detail & Related papers (2021-06-30T21:45:15Z) - Diabetic Retinopathy Detection using Ensemble Machine Learning [1.2891210250935146]
Diabetic Retinopathy (DR) is among the worlds leading vision loss causes in diabetic patients.
DR is a microvascular disease that affects the eye retina, which causes vessel blockage and cuts the main source of nutrition for the retina tissues.
arXiv Detail & Related papers (2021-06-22T17:36:08Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - DcardNet: Diabetic Retinopathy Classification at Multiple Levels Based
on Structural and Angiographic Optical Coherence Tomography [1.9262162668141078]
A convolutional neural network (CNN) based method is proposed to fulfill a diabetic retinopathy (DR) classification framework.
A densely and continuously connected neural network with adaptive rate dropout (DcardNet) is designed for the DR classification.
Three separate classification levels are generated for each case based on the International Clinical Diabetic Retinopathy scale.
arXiv Detail & Related papers (2020-06-09T19:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.