Averaged Adam accelerates stochastic optimization in the training of deep neural network approximations for partial differential equation and optimal control problems
- URL: http://arxiv.org/abs/2501.06081v1
- Date: Fri, 10 Jan 2025 16:15:25 GMT
- Title: Averaged Adam accelerates stochastic optimization in the training of deep neural network approximations for partial differential equation and optimal control problems
- Authors: Steffen Dereich, Arnulf Jentzen, Adrian Riekert,
- Abstract summary: This work is inspired by the classical Polyak-Ruppert averaging approach.
In this work we apply averaged variants of the Adam method to train deep learning networks (DNNs)
In each numerical example the employed averaged variants Adam outperform the standard Adam and the standard SGDs.
- Score: 5.052293146674794
- License:
- Abstract: Deep learning methods - usually consisting of a class of deep neural networks (DNNs) trained by a stochastic gradient descent (SGD) optimization method - are nowadays omnipresent in data-driven learning problems as well as in scientific computing tasks such as optimal control (OC) and partial differential equation (PDE) problems. In practically relevant learning tasks, often not the plain-vanilla standard SGD optimization method is employed to train the considered class of DNNs but instead more sophisticated adaptive and accelerated variants of the standard SGD method such as the popular Adam optimizer are used. Inspired by the classical Polyak-Ruppert averaging approach, in this work we apply averaged variants of the Adam optimizer to train DNNs to approximately solve exemplary scientific computing problems in the form of PDEs and OC problems. We test the averaged variants of Adam in a series of learning problems including physics-informed neural network (PINN), deep backward stochastic differential equation (deep BSDE), and deep Kolmogorov approximations for PDEs (such as heat, Black-Scholes, Burgers, and Allen-Cahn PDEs), including DNN approximations for OC problems, and including DNN approximations for image classification problems (ResNet for CIFAR-10). In each of the numerical examples the employed averaged variants of Adam outperform the standard Adam and the standard SGD optimizers, particularly, in the situation of the scientific machine learning problems. The Python source codes for the numerical experiments associated to this work can be found on GitHub at https://github.com/deeplearningmethods/averaged-adam.
Related papers
- DiffGrad for Physics-Informed Neural Networks [0.0]
Burgers' equation, a fundamental equation in fluid dynamics that is extensively used in PINNs, provides flexible results with the Adamprop.
This paper introduces a novel strategy for solving Burgers' equation by incorporating DiffGrad with PINNs.
arXiv Detail & Related papers (2024-09-05T04:39:35Z) - Non-convergence of Adam and other adaptive stochastic gradient descent optimization methods for non-vanishing learning rates [3.6185342807265415]
Deep learning algorithms are the key ingredients in many artificial intelligence (AI) systems.
Deep learning algorithms are typically consisting of a class of deep neural networks trained by a gradient descent (SGD) optimization method.
arXiv Detail & Related papers (2024-07-11T00:10:35Z) - Improving the Adaptive Moment Estimation (ADAM) stochastic optimizer through an Implicit-Explicit (IMEX) time-stepping approach [1.2233362977312945]
The classical Adam algorithm is a first-order implicit-explicit (IMEX) discretization of the underlying ODE.
We propose new extensions of the Adam scheme obtained by using higher-order IMEX methods to solve the ODE.
We derive a new optimization algorithm for neural network training that performs better than classical Adam on several regression and classification problems.
arXiv Detail & Related papers (2024-03-20T16:08:27Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Understanding the Generalization of Adam in Learning Neural Networks
with Proper Regularization [118.50301177912381]
We show that Adam can converge to different solutions of the objective with provably different errors, even with weight decay globalization.
We show that if convex, and the weight decay regularization is employed, any optimization algorithms including Adam will converge to the same solution.
arXiv Detail & Related papers (2021-08-25T17:58:21Z) - Research of Damped Newton Stochastic Gradient Descent Method for Neural
Network Training [6.231508838034926]
First-order methods like gradient descent(SGD) are recently the popular optimization method to train deep neural networks (DNNs)
In this paper, we propose the Damped Newton Descent(DN-SGD) and Gradient Descent Damped Newton(SGD-DN) methods to train DNNs for regression problems with Mean Square Error(MSE) and classification problems with Cross-Entropy Loss(CEL)
Our methods just accurately compute a small part of the parameters, which greatly reduces the computational cost and makes the learning process much faster and more accurate than SGD.
arXiv Detail & Related papers (2021-03-31T02:07:18Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
We investigate how the variability in solvers' space can improve neural ODEs performance.
We show that the right choice of solver parameterization can significantly affect neural ODEs models in terms of robustness to adversarial attacks.
arXiv Detail & Related papers (2021-03-15T17:26:34Z) - Train Like a (Var)Pro: Efficient Training of Neural Networks with
Variable Projection [2.7561479348365734]
Deep neural networks (DNNs) have achieved state-of-theart performance across a variety of traditional machine learning tasks.
In this paper, we consider training of DNNs, which arises in many state-of-the-art applications.
arXiv Detail & Related papers (2020-07-26T16:29:39Z) - MaxVA: Fast Adaptation of Step Sizes by Maximizing Observed Variance of
Gradients [112.00379151834242]
We propose adaptive learning rate principle, in which the running mean of squared gradient in Adam is replaced by a weighted mean, with weights chosen to maximize the estimated variance each coordinate.
This results in faster adaptation, which leads more desirable empirical convergence behaviors.
arXiv Detail & Related papers (2020-06-21T21:47:43Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.