FLAME: Financial Large-Language Model Assessment and Metrics Evaluation
- URL: http://arxiv.org/abs/2501.06211v1
- Date: Fri, 03 Jan 2025 09:17:23 GMT
- Title: FLAME: Financial Large-Language Model Assessment and Metrics Evaluation
- Authors: Jiayu Guo, Yu Guo, Martha Li, Songtao Tan,
- Abstract summary: We introduce FLAME, a comprehensive financial LLMs evaluation system in Chinese.
FLAME-Cer covers 14 types of authoritative financial certifications, with a total of approximately 16,000 carefully selected questions.
FLAME-Sce consists of 10 primary core financial business scenarios, 21 secondary financial business scenarios, and a comprehensive evaluation set of nearly 100 tertiary financial application tasks.
- Score: 2.6420673380196824
- License:
- Abstract: LLMs have revolutionized NLP and demonstrated potential across diverse domains. More and more financial LLMs have been introduced for finance-specific tasks, yet comprehensively assessing their value is still challenging. In this paper, we introduce FLAME, a comprehensive financial LLMs evaluation system in Chinese, which includes two core evaluation benchmarks: FLAME-Cer and FLAME-Sce. FLAME-Cer covers 14 types of authoritative financial certifications, including CPA, CFA, and FRM, with a total of approximately 16,000 carefully selected questions. All questions have been manually reviewed to ensure accuracy and representativeness. FLAME-Sce consists of 10 primary core financial business scenarios, 21 secondary financial business scenarios, and a comprehensive evaluation set of nearly 100 tertiary financial application tasks. We evaluate 6 representative LLMs, including GPT-4o, GLM-4, ERNIE-4.0, Qwen2.5, XuanYuan3, and the latest Baichuan4-Finance, revealing Baichuan4-Finance excels other LLMs in most tasks. By establishing a comprehensive and professional evaluation system, FLAME facilitates the advancement of financial LLMs in Chinese contexts. Instructions for participating in the evaluation are available on GitHub: https://github.com/FLAME-ruc/FLAME.
Related papers
- Baichuan4-Finance Technical Report [12.097387122694432]
We develop Baichuan4-Finance series, including Baichuan4-Finance-Base and an aligned language model Baichuan4-Finance.
In the continual pre-training phase, we propose a novel domain self-constraint training strategy, which enables Baichuan4-Finance-Base to acquire financial knowledge without losing general capabilities.
We evaluate Baichuan4-Finance on many widely used general datasets and two holistic financial benchmarks.
arXiv Detail & Related papers (2024-12-17T08:05:32Z) - Open-FinLLMs: Open Multimodal Large Language Models for Financial Applications [90.67346776473241]
Large language models (LLMs) have advanced financial applications, yet they often lack sufficient financial knowledge and struggle with tasks involving multi-modal inputs like tables and time series data.
We introduce textitOpen-FinLLMs, a series of Financial LLMs that embed comprehensive financial knowledge into text, tables, and time-series data.
We also present FinLLaVA, a multimodal LLM trained with 1.43M image-text instructions to handle complex financial data types.
arXiv Detail & Related papers (2024-08-20T16:15:28Z) - CFinBench: A Comprehensive Chinese Financial Benchmark for Large Language Models [61.324062412648075]
CFinBench is an evaluation benchmark for assessing the financial knowledge of large language models (LLMs) under Chinese context.
It comprises 99,100 questions spanning 43 second-level categories with 3 question types: single-choice, multiple-choice and judgment.
The results show that GPT4 and some Chinese-oriented models lead the benchmark, with the highest average accuracy being 60.16%.
arXiv Detail & Related papers (2024-07-02T14:34:36Z) - SuperCLUE-Fin: Graded Fine-Grained Analysis of Chinese LLMs on Diverse Financial Tasks and Applications [17.34850312139675]
SC-Fin is a pioneering evaluation framework tailored for Chinese-native financial large language models (FLMs)
It assesses FLMs across six financial application domains and twenty-five specialized tasks.
Using multi-turn, open-ended conversations that mimic real-life scenarios, SC-Fin measures models on a range of criteria.
arXiv Detail & Related papers (2024-04-29T19:04:35Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBen is the first extensive open-source evaluation benchmark, including 36 datasets spanning 24 financial tasks.
FinBen offers several key innovations: a broader range of tasks and datasets, the first evaluation of stock trading, novel agent and Retrieval-Augmented Generation (RAG) evaluation, and three novel open-source evaluation datasets for text summarization, question answering, and stock trading.
arXiv Detail & Related papers (2024-02-20T02:16:16Z) - D\'olares or Dollars? Unraveling the Bilingual Prowess of Financial LLMs
Between Spanish and English [67.48541936784501]
Tois'on de Oro is the first framework that establishes instruction datasets, finetuned LLMs, and evaluation benchmark for financial LLMs in Spanish joint with English.
We construct a rigorously curated bilingual instruction dataset including over 144K Spanish and English samples from 15 datasets covering 7 tasks.
We evaluate our model and existing LLMs using FLARE-ES, the first comprehensive bilingual evaluation benchmark with 21 datasets covering 9 tasks.
arXiv Detail & Related papers (2024-02-12T04:50:31Z) - DISC-FinLLM: A Chinese Financial Large Language Model based on Multiple
Experts Fine-tuning [74.99318727786337]
We propose Multiple Experts Fine-tuning Framework to build a financial large language model (LLM)
We build a financial instruction-tuning dataset named DISC-FIN-SFT, including instruction samples of four categories (consulting, NLP tasks, computing and retrieval-augmented generation)
Evaluations conducted on multiple benchmarks demonstrate that our model performs better than baseline models in various financial scenarios.
arXiv Detail & Related papers (2023-10-23T11:33:41Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIU is a comprehensive framework including the first financial large language model (LLMs) based on fine-tuning LLaMA with instruction data.
We propose FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks.
We conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks.
arXiv Detail & Related papers (2023-06-08T14:20:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.