Physics-Informed Neuro-Evolution (PINE): A Survey and Prospects
- URL: http://arxiv.org/abs/2501.06572v1
- Date: Sat, 11 Jan 2025 15:45:11 GMT
- Title: Physics-Informed Neuro-Evolution (PINE): A Survey and Prospects
- Authors: Jian Cheng Wong, Abhishek Gupta, Chin Chun Ooi, Pao-Hsiung Chiu, Jiao Liu, Yew-Soon Ong,
- Abstract summary: Physics-informed neural networks (PINNs) are infused with mathematically expressible laws of nature into their training loss function.
PINNs provide advantages over purely data-driven models in limited-data regimes.
This review examines PINNs for the first time in terms of model optimization and generalization.
- Score: 23.92936460045325
- License:
- Abstract: Deep learning models trained on finite data lack a complete understanding of the physical world. On the other hand, physics-informed neural networks (PINNs) are infused with such knowledge through the incorporation of mathematically expressible laws of nature into their training loss function. By complying with physical laws, PINNs provide advantages over purely data-driven models in limited-data regimes. This feature has propelled them to the forefront of scientific machine learning, a domain characterized by scarce and costly data. However, the vision of accurate physics-informed learning comes with significant challenges. This review examines PINNs for the first time in terms of model optimization and generalization, shedding light on the need for new algorithmic advances to overcome issues pertaining to the training speed, precision, and generalizability of today's PINN models. Of particular interest are the gradient-free methods of neuroevolution for optimizing the uniquely complex loss landscapes arising in PINN training. Methods synergizing gradient descent and neuroevolution for discovering bespoke neural architectures and balancing multiple conflicting terms in physics-informed learning objectives are positioned as important avenues for future research. Yet another exciting track is to cast neuroevolution as a meta-learner of generalizable PINN models.
Related papers
- Improved physics-informed neural network in mitigating gradient related failures [11.356695216531328]
Physics-informed neural networks (PINNs) integrate fundamental physical principles with advanced data-driven techniques.
PINNs face persistent challenges with stiffness in gradient flow, which limits their predictive capabilities.
This paper presents an improved PINN to mitigate gradient-related failures.
arXiv Detail & Related papers (2024-07-28T07:58:10Z) - The Baldwin Effect in Advancing Generalizability of Physics-Informed Neural Networks [22.57730294475146]
Physics-informed neural networks (PINNs) are at the forefront of scientific machine learning.
PINNs are often trained for a single physics task and require computationally expensive re-training for each new task.
This paper proposes a pioneering approach to advance the generalizability of PINNs through the framework of Baldwinian evolution.
arXiv Detail & Related papers (2023-12-06T02:31:12Z) - Neuroevolution of Physics-Informed Neural Nets: Benchmark Problems and
Comparative Results [25.12291688711645]
Physics-informed neural networks (PINNs) are one of the key techniques at the forefront of recent advances.
PINNs' unique loss formulations lead to a high degree of complexity and ruggedness that may not be conducive for gradient descent.
Neuroevolution algorithms, with their superior global search capacity, may be a better choice for PINNs.
arXiv Detail & Related papers (2022-12-15T05:54:16Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
Physics-informed neural networks (PINNs) provide a deep learning framework for numerically solving partial differential equations (PDEs)
We propose the generative adversarial neural network (GA-PINN), which integrates the generative adversarial (GA) mechanism with the structure of PINNs.
Inspired from the weighting strategy of the Adaboost method, we then introduce a point-weighting (PW) method to improve the training efficiency of PINNs.
arXiv Detail & Related papers (2022-05-18T06:50:44Z) - Scalable algorithms for physics-informed neural and graph networks [0.6882042556551611]
Physics-informed machine learning (PIML) has emerged as a promising new approach for simulating complex physical and biological systems.
In PIML, we can train such networks from additional information obtained by employing the physical laws and evaluating them at random points in the space-time domain.
We review some of the prevailing trends in embedding physics into machine learning, using physics-informed neural networks (PINNs) based primarily on feed-forward neural networks and automatic differentiation.
arXiv Detail & Related papers (2022-05-16T15:46:11Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.