PT-Symmetric $SU(2)$-like Random Matrix Ensembles: Invariant Distributions and Spectral Fluctuations
- URL: http://arxiv.org/abs/2501.06596v1
- Date: Sat, 11 Jan 2025 17:34:09 GMT
- Title: PT-Symmetric $SU(2)$-like Random Matrix Ensembles: Invariant Distributions and Spectral Fluctuations
- Authors: Stalin Abraham, A. Bhagwat, Sudhir Ranjan Jain,
- Abstract summary: The randomness of the ensemble is endowed by obtaining probability distributions based on symmetry and statistical independence.
The degree of level repulsion is a parameter of great interest as it makes a connection to quantum chaos.
- Score: 0.0
- License:
- Abstract: We consider an ensemble of $2\times 2$ normal matrices with complex entries representing operators in the quantum mechanics of 2 - level parity-time reversal (PT) symmetric systems. The randomness of the ensemble is endowed by obtaining probability distributions based on symmetry and statistical independence. The probability densities turn out to be power law with exponents that depend on the boundedness of the domain. For small spacings, $\sigma$, the probability density varies as $\sigma^{\nu}$, $\nu \geq 2$. The degree of level repulsion is a parameter of great interest as it makes a connection to quantum chaos; the lower bound of $\nu$ for our ensemble coincides with the Gaussian Unitary Ensemble. We believe that the systematic development presented here paves the way for further generalizations in the field of random matrix theory for PT-symmetric quantum systems.
Related papers
- Unitary Designs from Random Symmetric Quantum Circuits [0.8192907805418583]
We study distributions of unitaries generated by random quantum circuits containing only symmetry-respecting gates.
We obtain an equation that determines the exact design properties of such distributions.
arXiv Detail & Related papers (2024-08-26T17:52:46Z) - Efficient unitary designs and pseudorandom unitaries from permutations [35.66857288673615]
We show that products exponentiated sums of $S(N)$ permutations with random phases match the first $2Omega(n)$ moments of the Haar measure.
The heart of our proof is a conceptual connection between the large dimension (large-$N$) expansion in random matrix theory and the method.
arXiv Detail & Related papers (2024-04-25T17:08:34Z) - Efficient Unitary T-designs from Random Sums [0.6640968473398456]
Unitary $T$-designs play an important role in quantum information, with diverse applications in quantum algorithms, benchmarking, tomography, and communication.
We provide a new construction of $T$-designs via random matrix theory using $tildeO(T2 n2)$ quantum gates.
arXiv Detail & Related papers (2024-02-14T17:32:30Z) - The $\mathfrak S_k$-circular limit of random tensor flattenings [1.2891210250935143]
We show the convergence toward an operator-valued circular system with amalgamation on permutation group algebras.
As an application we describe the law of large random density matrix of bosonic quantum states.
arXiv Detail & Related papers (2023-07-21T08:59:33Z) - Quantum Current and Holographic Categorical Symmetry [62.07387569558919]
A quantum current is defined as symmetric operators that can transport symmetry charges over an arbitrary long distance.
The condition for quantum currents to be superconducting is also specified, which corresponds to condensation of anyons in one higher dimension.
arXiv Detail & Related papers (2023-05-22T11:00:25Z) - Why we should interpret density matrices as moment matrices: the case of
(in)distinguishable particles and the emergence of classical reality [69.62715388742298]
We introduce a formulation of quantum theory (QT) as a general probabilistic theory but expressed via quasi-expectation operators (QEOs)
We will show that QT for both distinguishable and indistinguishable particles can be formulated in this way.
We will show that finitely exchangeable probabilities for a classical dice are as weird as QT.
arXiv Detail & Related papers (2022-03-08T14:47:39Z) - Symmetry from Entanglement Suppression [0.0]
We show that a minimally entangling $S$-matrix would give rise to global symmetries.
For $N_q$ species of qubit, the Identity gate is associated with an $[SU(2)]N_q$ symmetry.
arXiv Detail & Related papers (2021-04-22T02:50:10Z) - $\PT$ Symmetry and Renormalisation in Quantum Field Theory [62.997667081978825]
Quantum systems governed by non-Hermitian Hamiltonians with $PT$ symmetry are special in having real energy eigenvalues bounded below and unitary time evolution.
We show how $PT$ symmetry may allow interpretations that evade ghosts and instabilities present in an interpretation of the theory within a Hermitian framework.
arXiv Detail & Related papers (2021-03-27T09:46:36Z) - "Striped" Rectangular Rigid Box with Hermitian and non-Hermitian
$\mathcal{PT}$ Symmetric Potentials [0.0]
Eigenspectra of a spinless quantum particle trapped inside a rigid, rectangular, two-dimensional (2D) box is investigated.
Four sectors or "stripes" inscribed in the rigid box are studied.
arXiv Detail & Related papers (2021-03-09T09:42:31Z) - Fermion and meson mass generation in non-Hermitian Nambu--Jona-Lasinio
models [77.34726150561087]
We investigate the effects of non-Hermiticity on interacting fermionic systems.
We do this by including non-Hermitian bilinear terms into the 3+1 dimensional Nambu--Jona-Lasinio (NJL) model.
arXiv Detail & Related papers (2021-02-02T13:56:11Z) - Random quantum circuits anti-concentrate in log depth [118.18170052022323]
We study the number of gates needed for the distribution over measurement outcomes for typical circuit instances to be anti-concentrated.
Our definition of anti-concentration is that the expected collision probability is only a constant factor larger than if the distribution were uniform.
In both the case where the gates are nearest-neighbor on a 1D ring and the case where gates are long-range, we show $O(n log(n)) gates are also sufficient.
arXiv Detail & Related papers (2020-11-24T18:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.