ChartCoder: Advancing Multimodal Large Language Model for Chart-to-Code Generation
- URL: http://arxiv.org/abs/2501.06598v1
- Date: Sat, 11 Jan 2025 17:52:22 GMT
- Title: ChartCoder: Advancing Multimodal Large Language Model for Chart-to-Code Generation
- Authors: Xuanle Zhao, Xianzhen Luo, Qi Shi, Chi Chen, Shuo Wang, Wanxiang Che, Zhiyuan Liu, Maosong Sun,
- Abstract summary: textbfChartCoder is the first dedicated chart-to-code MLLM.
We introduce textbfChart2Code-160k, the first large-scale and diverse dataset for chart-to-code generation.
Experiments demonstrate that ChartCoder, with only 7B parameters, surpasses existing open-source MLLMs on chart-to-code benchmarks.
- Score: 90.82566869965011
- License:
- Abstract: Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in chart understanding tasks. However, interpreting charts with textual descriptions often leads to information loss, as it fails to fully capture the dense information embedded in charts. In contrast, parsing charts into code provides lossless representations that can effectively contain all critical details. Although existing open-source MLLMs have achieved success in chart understanding tasks, they still face two major challenges when applied to chart-to-code tasks.: (1) Low executability and poor restoration of chart details in the generated code and (2) Lack of large-scale and diverse training data. To address these challenges, we propose \textbf{ChartCoder}, the first dedicated chart-to-code MLLM, which leverages Code LLMs as the language backbone to enhance the executability of the generated code. Furthermore, we introduce \textbf{Chart2Code-160k}, the first large-scale and diverse dataset for chart-to-code generation, and propose the \textbf{Snippet-of-Thought (SoT)} method, which transforms direct chart-to-code generation data into step-by-step generation. Experiments demonstrate that ChartCoder, with only 7B parameters, surpasses existing open-source MLLMs on chart-to-code benchmarks, achieving superior chart restoration and code excitability. Our code will be available at https://github.com/thunlp/ChartCoder.
Related papers
- Distill Visual Chart Reasoning Ability from LLMs to MLLMs [38.62832112530892]
Solving complex chart Q&A tasks requires advanced visual reasoning abilities in multimodal large language models (MLLMs)
We propose Code-as-Intermediary Translation (CIT), a cost-effective, efficient and easily scalable data synthesis method for distilling visual reasoning abilities from LLMs to MLLMs.
We employ text-based synthesizing techniques to construct chart-plotting code and produce ReachQA, a dataset containing 3k reasoning-intensive charts and 20k Q&A pairs.
arXiv Detail & Related papers (2024-10-24T14:50:42Z) - Text2Chart31: Instruction Tuning for Chart Generation with Automatic Feedback [37.275533538711436]
We propose a hierarchical pipeline and a new dataset for chart generation.
Our dataset, Text2Chart31, includes 31 unique plot types referring to the Matplotlib library.
We introduce a reinforcement learning-based instruction tuning technique for chart generation tasks without requiring human feedback.
arXiv Detail & Related papers (2024-10-05T07:25:56Z) - TinyChart: Efficient Chart Understanding with Visual Token Merging and Program-of-Thoughts Learning [83.58521787193293]
We present TinyChart, an efficient MLLM for chart understanding with only 3B parameters.
TinyChart overcomes two key challenges in efficient chart understanding: (1) reduce the burden of learning numerical computations through a Program-of-Thoughts (PoT) learning strategy, and (2) reduce lengthy vision feature sequences produced by the vision transformer for high-resolution images through a Vision Token Merging module.
arXiv Detail & Related papers (2024-04-25T14:23:24Z) - ChartX & ChartVLM: A Versatile Benchmark and Foundation Model for Complicated Chart Reasoning [54.82612435284695]
We benchmark the ability of off-the-shelf Multi-modal Large Language Models (MLLMs) in the chart domain.
We construct ChartX, a multi-modal evaluation set covering 18 chart types, 7 chart tasks, 22 disciplinary topics, and high-quality chart data.
We develop ChartVLM to offer a new perspective on handling multi-modal tasks that strongly depend on interpretable patterns.
arXiv Detail & Related papers (2024-02-19T14:48:23Z) - ChartAssisstant: A Universal Chart Multimodal Language Model via
Chart-to-Table Pre-training and Multitask Instruction Tuning [54.89249749894061]
ChartAssistant is a vision-language model for universal chart comprehension and reasoning.
It undergoes a two-stage training process, starting with pre-training on chart-to-table parsing to align chart and text.
Experimental results demonstrate significant performance gains over the state-of-the-art UniChart and Chartllama method.
arXiv Detail & Related papers (2024-01-04T17:51:48Z) - ChartLlama: A Multimodal LLM for Chart Understanding and Generation [70.1393163657813]
We create a high-quality instruction-tuning dataset leveraging GPT-4.
Next, we introduce ChartLlama, a multi-modal large language model that we've trained using our created dataset.
arXiv Detail & Related papers (2023-11-27T15:20:23Z) - UniChart: A Universal Vision-language Pretrained Model for Chart
Comprehension and Reasoning [29.947053208614246]
We present UniChart, a pretrained model for chart comprehension and reasoning.
UniChart encodes the relevant text, data, and visual elements of charts and then uses a chart-grounded text decoder to generate the expected output in natural language.
We propose several chart-specific pretraining tasks that include: (i) low-level tasks to extract the visual elements (e.g., bars, lines) and data from charts, and (ii) high-level tasks to acquire chart understanding and reasoning skills.
arXiv Detail & Related papers (2023-05-24T06:11:17Z) - ChartReader: A Unified Framework for Chart Derendering and Comprehension
without Heuristic Rules [89.75395046894809]
We present ChartReader, a unified framework that seamlessly integrates chart derendering and comprehension tasks.
Our approach includes a transformer-based chart component detection module and an extended pre-trained vision-language model for chart-to-X tasks.
Our proposed framework can significantly reduce the manual effort involved in chart analysis, providing a step towards a universal chart understanding model.
arXiv Detail & Related papers (2023-04-05T00:25:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.