SafeSplit: A Novel Defense Against Client-Side Backdoor Attacks in Split Learning
- URL: http://arxiv.org/abs/2501.06650v1
- Date: Sat, 11 Jan 2025 22:20:20 GMT
- Title: SafeSplit: A Novel Defense Against Client-Side Backdoor Attacks in Split Learning
- Authors: Phillip Rieger, Alessandro Pegoraro, Kavita Kumari, Tigist Abera, Jonathan Knauer, Ahmad-Reza Sadeghi,
- Abstract summary: Split Learning (SL) is a distributed deep learning approach enabling multiple clients and a server to collaboratively train and infer on a shared deep neural network (DNN)
This paper presents SafeSplit, the first defense against client-side backdoor attacks in Split Learning (SL)
It uses a two-fold analysis to identify client-induced changes and detect poisoned models.
- Score: 53.16528046390881
- License:
- Abstract: Split Learning (SL) is a distributed deep learning approach enabling multiple clients and a server to collaboratively train and infer on a shared deep neural network (DNN) without requiring clients to share their private local data. The DNN is partitioned in SL, with most layers residing on the server and a few initial layers and inputs on the client side. This configuration allows resource-constrained clients to participate in training and inference. However, the distributed architecture exposes SL to backdoor attacks, where malicious clients can manipulate local datasets to alter the DNN's behavior. Existing defenses from other distributed frameworks like Federated Learning are not applicable, and there is a lack of effective backdoor defenses specifically designed for SL. We present SafeSplit, the first defense against client-side backdoor attacks in Split Learning (SL). SafeSplit enables the server to detect and filter out malicious client behavior by employing circular backward analysis after a client's training is completed, iteratively reverting to a trained checkpoint where the model under examination is found to be benign. It uses a two-fold analysis to identify client-induced changes and detect poisoned models. First, a static analysis in the frequency domain measures the differences in the layer's parameters at the server. Second, a dynamic analysis introduces a novel rotational distance metric that assesses the orientation shifts of the server's layer parameters during training. Our comprehensive evaluation across various data distributions, client counts, and attack scenarios demonstrates the high efficacy of this dual analysis in mitigating backdoor attacks while preserving model utility.
Related papers
- Robust Federated Learning Mitigates Client-side Training Data Distribution Inference Attacks [48.70867241987739]
InferGuard is a novel Byzantine-robust aggregation rule aimed at defending against client-side training data distribution inference attacks.
The results of our experiments indicate that our defense mechanism is highly effective in protecting against client-side training data distribution inference attacks.
arXiv Detail & Related papers (2024-03-05T17:41:35Z) - Towards Attack-tolerant Federated Learning via Critical Parameter
Analysis [85.41873993551332]
Federated learning systems are susceptible to poisoning attacks when malicious clients send false updates to the central server.
This paper proposes a new defense strategy, FedCPA (Federated learning with Critical Analysis)
Our attack-tolerant aggregation method is based on the observation that benign local models have similar sets of top-k and bottom-k critical parameters, whereas poisoned local models do not.
arXiv Detail & Related papers (2023-08-18T05:37:55Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
Federated learning enables learning from decentralized data sources without compromising privacy.
It is vulnerable to model poisoning attacks, where malicious clients interfere with the training process.
We propose a new defense mechanism that focuses on the client-side, called FedDefender, to help benign clients train robust local models.
arXiv Detail & Related papers (2023-07-18T08:00:41Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
Federated learning has become a widely used paradigm for collaboratively training a common model among different participants.
Many attacks have shown that it is still possible to infer sensitive information such as membership, property, or outright reconstruction of participant data.
We show that simple linear models can effectively capture client-specific properties only from the aggregated model updates.
arXiv Detail & Related papers (2023-03-07T14:11:01Z) - SplitOut: Out-of-the-Box Training-Hijacking Detection in Split Learning via Outlier Detection [0.0]
Split learning enables efficient and privacy-aware training of a deep neural network by splitting a neural network so that the clients (data holders) compute the first layers and only share the intermediate output with the central compute-heavy server.
Server has full control over what the client models learn, which has already been exploited to infer the private data of clients and to implement backdoors in the client models.
We show that given modest assumptions regarding the clients' compute capabilities, an out-of-the-box detection method can be used to detect existing training-hijacking attacks with almost-zero false positive rates.
arXiv Detail & Related papers (2023-02-16T23:02:39Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - CrowdGuard: Federated Backdoor Detection in Federated Learning [39.58317527488534]
This paper presents a novel defense mechanism, CrowdGuard, that effectively mitigates backdoor attacks in Federated Learning.
CrowdGuard employs a server-located stacked clustering scheme to enhance its resilience to rogue client feedback.
The evaluation results demonstrate that CrowdGuard achieves a 100% True-Positive-Rate and True-Negative-Rate across various scenarios.
arXiv Detail & Related papers (2022-10-14T11:27:49Z) - SplitGuard: Detecting and Mitigating Training-Hijacking Attacks in Split
Learning [0.0]
Split learning involves dividing a neural network between a client and a server so that the client computes the initial set of layers, and the server computes the rest.
Such training-hijacking attacks present a significant risk for the data privacy of split learning clients.
We propose SplitGuard, a method by which a split learning client can detect whether it is being targeted by a training-hijacking attack or not.
arXiv Detail & Related papers (2021-08-20T08:29:22Z) - UnSplit: Data-Oblivious Model Inversion, Model Stealing, and Label
Inference Attacks Against Split Learning [0.0]
Split learning framework aims to split up the model among the client and the server.
We show that split learning paradigm can pose serious security risks and provide no more than a false sense of security.
arXiv Detail & Related papers (2021-08-20T07:39:16Z) - A Framework for Evaluating Gradient Leakage Attacks in Federated
Learning [14.134217287912008]
Federated learning (FL) is an emerging distributed machine learning framework for collaborative model training with a network of clients.
Recent studies have shown that even sharing local parameter updates from a client to the federated server may be susceptible to gradient leakage attacks.
We present a principled framework for evaluating and comparing different forms of client privacy leakage attacks.
arXiv Detail & Related papers (2020-04-22T05:15:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.