Improving Pain Classification using Spatio-Temporal Deep Learning Approaches with Facial Expressions
- URL: http://arxiv.org/abs/2501.06787v2
- Date: Wed, 15 Jan 2025 09:39:03 GMT
- Title: Improving Pain Classification using Spatio-Temporal Deep Learning Approaches with Facial Expressions
- Authors: Aafaf Ridouan, Amine Bohi, Youssef Mourchid,
- Abstract summary: Pain management and severity detection are crucial for effective treatment.
Traditional self-reporting methods are subjective and may be unsuitable for non-verbal individuals.
We explore automated pain detection using facial expressions.
- Score: 0.27309692684728604
- License:
- Abstract: Pain management and severity detection are crucial for effective treatment, yet traditional self-reporting methods are subjective and may be unsuitable for non-verbal individuals (people with limited speaking skills). To address this limitation, we explore automated pain detection using facial expressions. Our study leverages deep learning techniques to improve pain assessment by analyzing facial images from the Pain Emotion Faces Database (PEMF). We propose two novel approaches1: (1) a hybrid ConvNeXt model combined with Long Short-Term Memory (LSTM) blocks to analyze video frames and predict pain presence, and (2) a Spatio-Temporal Graph Convolution Network (STGCN) integrated with LSTM to process landmarks from facial images for pain detection. Our work represents the first use of the PEMF dataset for binary pain classification and demonstrates the effectiveness of these models through extensive experimentation. The results highlight the potential of combining spatial and temporal features for enhanced pain detection, offering a promising advancement in objective pain assessment methodologies.
Related papers
- Transformer with Leveraged Masked Autoencoder for video-based Pain Assessment [11.016004057765185]
We enhance pain recognition by employing facial video analysis within a Transformer-based deep learning model.
By combining a powerful Masked Autoencoder with a Transformers-based classifier, our model effectively captures pain level indicators through both expressions and micro-expressions.
arXiv Detail & Related papers (2024-09-08T13:14:03Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - Automated facial recognition system using deep learning for pain
assessment in adults with cerebral palsy [0.5242869847419834]
Existing measures, relying on direct observation by caregivers, lack sensitivity and specificity.
Ten neural networks were trained on three pain image databases.
InceptionV3 exhibited promising performance on the CP-PAIN dataset.
arXiv Detail & Related papers (2024-01-22T17:55:16Z) - Pain Analysis using Adaptive Hierarchical Spatiotemporal Dynamic Imaging [16.146223377936035]
We introduce the Adaptive temporal Dynamic Image (AHDI) technique.
AHDI encodes deep changes in facial videos into singular RGB image, permitting application simpler 2D models for video representation.
Within this framework, we employ a residual network to derive generalized facial representations.
These representations are optimized for two tasks: estimating pain intensity and differentiating between genuine and simulated pain expressions.
arXiv Detail & Related papers (2023-12-12T01:23:05Z) - Pain level and pain-related behaviour classification using GRU-based
sparsely-connected RNNs [61.080598804629375]
People with chronic pain unconsciously adapt specific body movements to protect themselves from injury or additional pain.
Because there is no dedicated benchmark database to analyse this correlation, we considered one of the specific circumstances that potentially influence a person's biometrics during daily activities.
We proposed a sparsely-connected recurrent neural networks (s-RNNs) ensemble with the gated recurrent unit (GRU) that incorporates multiple autoencoders.
We conducted several experiments which indicate that the proposed method outperforms the state-of-the-art approaches in classifying both pain level and pain-related behaviour.
arXiv Detail & Related papers (2022-12-20T12:56:28Z) - Pain Detection in Masked Faces during Procedural Sedation [0.0]
Pain monitoring is essential to the quality of care for patients undergoing a medical procedure with sedation.
Previous studies have shown the viability of computer vision methods in detecting pain in unoccluded faces.
This study has collected video data from masked faces of 14 patients undergoing procedures in an interventional radiology department.
arXiv Detail & Related papers (2022-11-12T15:55:33Z) - Intelligent Sight and Sound: A Chronic Cancer Pain Dataset [74.77784420691937]
This paper introduces the first chronic cancer pain dataset, collected as part of the Intelligent Sight and Sound (ISS) clinical trial.
The data collected to date consists of 29 patients, 509 smartphone videos, 189,999 frames, and self-reported affective and activity pain scores.
Using static images and multi-modal data to predict self-reported pain levels, early models show significant gaps between current methods available to predict pain.
arXiv Detail & Related papers (2022-04-07T22:14:37Z) - A Survey on Masked Facial Detection Methods and Datasets for Fighting
Against COVID-19 [64.88701052813462]
Coronavirus disease 2019 (COVID-19) continues to pose a great challenge to the world since its outbreak.
To fight against the disease, a series of artificial intelligence (AI) techniques are developed and applied to real-world scenarios.
In this paper, we primarily focus on the AI techniques of masked facial detection and related datasets.
arXiv Detail & Related papers (2022-01-13T03:28:20Z) - Leveraging Human Selective Attention for Medical Image Analysis with
Limited Training Data [72.1187887376849]
The selective attention mechanism helps the cognition system focus on task-relevant visual clues by ignoring the presence of distractors.
We propose a framework to leverage gaze for medical image analysis tasks with small training data.
Our method is demonstrated to achieve superior performance on both 3D tumor segmentation and 2D chest X-ray classification tasks.
arXiv Detail & Related papers (2021-12-02T07:55:25Z) - Non-contact Pain Recognition from Video Sequences with Remote
Physiological Measurements Prediction [53.03469655641418]
We present a novel multi-task learning framework which encodes both appearance changes and physiological cues in a non-contact manner for pain recognition.
We establish the state-of-the-art performance of non-contact pain recognition on publicly available pain databases.
arXiv Detail & Related papers (2021-05-18T20:47:45Z) - Pain Intensity Estimation from Mobile Video Using 2D and 3D Facial
Keypoints [1.6402428190800593]
Managing post-surgical pain is critical for successful surgical outcomes.
One of the challenges of pain management is accurately assessing the pain level of patients.
We introduce an approach that analyzes 2D and 3D facial keypoints of post-surgical patients to estimate their pain intensity level.
arXiv Detail & Related papers (2020-06-17T00:18:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.