Benchmarking YOLOv8 for Optimal Crack Detection in Civil Infrastructure
- URL: http://arxiv.org/abs/2501.06922v1
- Date: Sun, 12 Jan 2025 20:17:46 GMT
- Title: Benchmarking YOLOv8 for Optimal Crack Detection in Civil Infrastructure
- Authors: Woubishet Zewdu Taffese, Ritesh Sharma, Mohammad Hossein Afsharmovahed, Gunasekaran Manogaran, Genda Chen,
- Abstract summary: This study bridges the gap by rigorously evaluating YOLOv8's performance across five model scales.
YOLOv8 delivered exceptional accuracy and speed, setting a new benchmark for real-time crack detection.
This work paves the way for safer, more efficient transportation systems worldwide.
- Score: 9.147836981924016
- License:
- Abstract: Ensuring the structural integrity and safety of bridges is crucial for the reliability of transportation networks and public safety. Traditional crack detection methods are increasingly being supplemented or replaced by advanced artificial intelligence (AI) techniques. However, most of the models rely on two-stage target detection algorithms, which pose concerns for real-time applications due to their lower speed. While models such as YOLO (You Only Look Once) have emerged as transformative tools due to their remarkable speed and accuracy. However, the potential of the latest YOLOv8 framework in this domain remains underexplored. This study bridges that gap by rigorously evaluating YOLOv8's performance across five model scales (nano, small, medium, large, and extra-large) using a high-quality Roboflow dataset. A comprehensive hyperparameter optimization was performed, testing six state-of-the-art optimizers-Stochastic Gradient Descent, Adaptive Moment Estimation, Adam with Decoupled Weight Decay, Root Mean Square Propagation, Rectified Adam, and Nesterov-accelerated Adam. Results revealed that YOLOv8, optimized with Stochastic Gradient Descent, delivered exceptional accuracy and speed, setting a new benchmark for real-time crack detection. Beyond its immediate application, this research positions YOLOv8 as a foundational approach for integrating advanced computer vision techniques into infrastructure monitoring. By enabling more reliable and proactive maintenance of aging bridge networks, this work paves the way for safer, more efficient transportation systems worldwide.
Related papers
- YOLOv12: A Breakdown of the Key Architectural Features [0.5639904484784127]
YOLOv12 is a significant advancement in single-stage, real-time object detection.
It incorporates an optimised backbone (R-ELAN), 7x7 separable convolutions, and FlashAttention-driven area-based attention.
It offers scalable solutions for both latency-sensitive and high-accuracy applications.
arXiv Detail & Related papers (2025-02-20T17:08:43Z) - Optimizing YOLO Architectures for Optimal Road Damage Detection and Classification: A Comparative Study from YOLOv7 to YOLOv10 [0.0]
This paper presents a comprehensive workflow for road damage detection using deep learning models.
To accommodate hardware limitations, large images are cropped, and lightweight models are utilized.
The proposed approach employs multiple model architectures, including a custom YOLOv7 model with Coordinate Attention layers and a Tiny YOLOv7 model.
arXiv Detail & Related papers (2024-10-10T22:55:12Z) - What is YOLOv9: An In-Depth Exploration of the Internal Features of the Next-Generation Object Detector [0.0]
This study focuses on the YOLOv9 object detection model, focusing on its architectural innovations, training methodologies, and performance improvements.
Key advancements, such as the Generalized Efficient Layer Aggregation Network GELAN and Programmable Gradient Information PGI, significantly enhance feature extraction and gradient flow.
This paper provides the first in depth exploration of YOLOv9s internal features and their real world applicability, establishing it as a state of the art solution for real time object detection.
arXiv Detail & Related papers (2024-09-12T07:46:58Z) - YOLOv5, YOLOv8 and YOLOv10: The Go-To Detectors for Real-time Vision [0.6662800021628277]
This paper focuses on the evolution of the YOLO (You Only Look Once) object detection algorithm, focusing on YOLOv5, YOLOv8, and YOLOv10.
We analyze the architectural advancements, performance improvements, and suitability for edge deployment across these versions.
arXiv Detail & Related papers (2024-07-03T10:40:20Z) - YOLOv10: Real-Time End-to-End Object Detection [68.28699631793967]
YOLOs have emerged as the predominant paradigm in the field of real-time object detection.
The reliance on the non-maximum suppression (NMS) for post-processing hampers the end-to-end deployment of YOLOs.
We introduce the holistic efficiency-accuracy driven model design strategy for YOLOs.
arXiv Detail & Related papers (2024-05-23T11:44:29Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
We endow the models with the capacity of predicting the future, significantly improving the results for streaming perception.
We consider multiple velocities driving scene and propose Velocity-awared streaming AP (VsAP) to jointly evaluate the accuracy.
Our simple method achieves the state-of-the-art performance on Argoverse-HD dataset and improves the sAP and VsAP by 4.7% and 8.2% respectively.
arXiv Detail & Related papers (2022-07-21T12:03:02Z) - YOLOv5s-GTB: light-weighted and improved YOLOv5s for bridge crack
detection [0.0]
This study proposes a light-weighted, high-precision, deep learning-based bridge apparent crack recognition model that can be deployed in mobile devices' scenarios.
YOLOv5 is identified as the basic framework for the light-weighted crack detection model through experiments for comparison and validation.
The improved model has 42% fewer parameters and faster inference response, but also significantly outperforms the original model in terms of accuracy and mAP.
arXiv Detail & Related papers (2022-06-03T10:52:59Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot object detection (FSOD) aims at learning a generic detector that can adapt to unseen tasks with scarce training samples.
We present an efficient pretrain-transfer framework (PTF) baseline with no computational increment.
We also propose an adaptive length re-scaling (ALR) strategy to alleviate the vector length inconsistency between the predicted novel weights and the pretrained base weights.
arXiv Detail & Related papers (2022-03-23T06:24:31Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.