Combining LLM decision and RL action selection to improve RL policy for adaptive interventions
- URL: http://arxiv.org/abs/2501.06980v1
- Date: Mon, 13 Jan 2025 00:03:20 GMT
- Title: Combining LLM decision and RL action selection to improve RL policy for adaptive interventions
- Authors: Karine Karine, Benjamin M. Marlin,
- Abstract summary: We are inspired by the success of Large Language Models (LLMs) to update the RL policy in real time.
We use the text-based user preference to influence the action selection on the fly, in order to immediately incorporate the user preference.
We show that our approach is able to take into account the text-based user preferences, while improving the RL policy, thus improving personalization in adaptive intervention.
- Score: 9.395236804312496
- License:
- Abstract: Reinforcement learning (RL) is increasingly being used in the healthcare domain, particularly for the development of personalized health adaptive interventions. Inspired by the success of Large Language Models (LLMs), we are interested in using LLMs to update the RL policy in real time, with the goal of accelerating personalization. We use the text-based user preference to influence the action selection on the fly, in order to immediately incorporate the user preference. We use the term "user preference" as a broad term to refer to a user personal preference, constraint, health status, or a statement expressing like or dislike, etc. Our novel approach is a hybrid method that combines the LLM response and the RL action selection to improve the RL policy. Given an LLM prompt that incorporates the user preference, the LLM acts as a filter in the typical RL action selection. We investigate different prompting strategies and action selection strategies. To evaluate our approach, we implement a simulation environment that generates the text-based user preferences and models the constraints that impact behavioral dynamics. We show that our approach is able to take into account the text-based user preferences, while improving the RL policy, thus improving personalization in adaptive intervention.
Related papers
- Rule-Bottleneck Reinforcement Learning: Joint Explanation and Decision Optimization for Resource Allocation with Language Agents [26.7942726790676]
Rule-Bottleneck Reinforcement Learning (RBRL) is a novel framework that jointly optimize decision and explanations.
Evaluations in real-world scenarios highlight RBRL's competitive performance with deep RL and efficiency gains over LLM fine-tuning.
arXiv Detail & Related papers (2025-02-15T09:01:31Z) - Preference VLM: Leveraging VLMs for Scalable Preference-Based Reinforcement Learning [17.59802090014789]
We introduce PrefVLM, a framework that integrates Vision-Language Models (VLMs) with selective human feedback.
Our method leverages VLMs to generate initial preference labels, which are then filtered to identify uncertain cases for targeted human annotation.
Experiments on Meta-World manipulation tasks demonstrate that PrefVLM achieves comparable or superior success rates to state-of-the-art methods.
arXiv Detail & Related papers (2025-02-03T18:50:15Z) - Large Language Model driven Policy Exploration for Recommender Systems [50.70228564385797]
offline RL policies trained on static user data are vulnerable to distribution shift when deployed in dynamic online environments.
Online RL-based RS also face challenges in production deployment due to the risks of exposing users to untrained or unstable policies.
Large Language Models (LLMs) offer a promising solution to mimic user objectives and preferences for pre-training policies offline.
We propose an Interaction-Augmented Learned Policy (iALP) that utilizes user preferences distilled from an LLM.
arXiv Detail & Related papers (2025-01-23T16:37:44Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
Large language models (LLMs) are increasingly embedded in everyday applications.
Ensuring their alignment with the diverse preferences of individual users has become a critical challenge.
We present a novel framework for few-shot steerable alignment.
arXiv Detail & Related papers (2024-12-18T16:14:59Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) is designed to discern between more and less preferred responses derived from both identical and related prompts.
RPO has demonstrated a superior ability to align large language models with user preferences and to improve their adaptability during the training process.
arXiv Detail & Related papers (2024-02-12T22:47:57Z) - Nash Learning from Human Feedback [86.09617990412941]
We introduce an alternative pipeline for the fine-tuning of large language models using pairwise human feedback.
We term this approach Nash learning from human feedback (NLHF)
We present a novel algorithmic solution, Nash-MD, founded on the principles of mirror descent.
arXiv Detail & Related papers (2023-12-01T19:26:23Z) - Contrastive Preference Learning: Learning from Human Feedback without RL [71.77024922527642]
We introduce Contrastive Preference Learning (CPL), an algorithm for learning optimal policies from preferences without learning reward functions.
CPL is fully off-policy, uses only a simple contrastive objective, and can be applied to arbitrary MDPs.
arXiv Detail & Related papers (2023-10-20T16:37:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.