Hybrid Scheme of Post-Quantum Cryptography and Elliptic-Curve Cryptography for Certificates -- A Case Study of Security Credential Management System in Vehicle-to-Everything Communications
- URL: http://arxiv.org/abs/2501.07028v1
- Date: Mon, 13 Jan 2025 02:59:59 GMT
- Title: Hybrid Scheme of Post-Quantum Cryptography and Elliptic-Curve Cryptography for Certificates -- A Case Study of Security Credential Management System in Vehicle-to-Everything Communications
- Authors: Abel C. H. Chen, Bon-Yeh Lin,
- Abstract summary: This study proposes a hybrid certificate scheme of PQC and ECC to overcome the challenges in V2X communication.
PQC is used to establish a security level resistant to quantum computing attacks, while ECC is utilized to establish anonymous certificates.
- Score: 0.0
- License:
- Abstract: Due to the current standard of Security Credential Management System (SCMS) for Vehicle-to-Everything (V2X) communications using asymmetric cryptography, specifically Elliptic-Curve Cryptography (ECC), which may be vulnerable to quantum computing attacks. Therefore, the V2X SCMS is threatened by quantum computing attacks. However, although the National Institute of Standards and Technology (NIST) has already selected Post-Quantum Cryptography (PQC) algorithms as the standard, the current PQC algorithms may have issues such as longer public key lengths, longer signature lengths, or lower signature generation and verification efficiency, which may not fully meet the requirements of V2X communication applications. In view of the challenges in V2X communication, such as packet length, signature generation and verification efficiency, security level, and vehicle privacy, this study proposes a hybrid certificate scheme of PQC and ECC. By leveraging the strengths of both PQC and ECC, this scheme aims to overcome the challenges in V2X communication. PQC is used to establish a security level resistant to quantum computing attacks, while ECC is utilized to establish anonymous certificates and reduce packet length to meet the requirements of V2X communication. In the practical experiments, the study implemented the SCMS end entity based on the Chunghwa Telecom SCMS and the Clientron On-Board Unit (OBU) to conduct field tests in Danhai New Town in New Taipei City. The performance of various existing hybrid certificate schemes combining PQC (e.g., Dilithium, Falcon, and SPHINCS+) and ECC is compared, and a practical solution is provided for V2X industries.
Related papers
- Onion Routing Key Distribution for QKDN [1.8637078358591843]
The advance of quantum computing poses a significant threat to classical cryptography.
Two main approaches have emerged: quantum cryptography and post-quantum cryptography.
We propose a secure key distribution protocol for Quantum Key Distribution Networks (QKDN)
arXiv Detail & Related papers (2025-02-10T16:47:42Z) - Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - Enhancing Transportation Cyber-Physical Systems Security: A Shift to Post-Quantum Cryptography [6.676253819673155]
The rise of quantum computing threatens traditional cryptographic algorithms that secure Transportation Cyber-Physical Systems ( TCPS)
The objective of this paper is to underscore the urgency of transitioning to post-quantum cryptography (PQC) to mitigate these risks.
We analyzed vulnerabilities in traditional cryptography against quantum attacks and reviewed the applicability of NIST-standardized PQC schemes in TCPS.
arXiv Detail & Related papers (2024-11-20T04:11:33Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - The Road to Near-Capacity CV-QKD Reconciliation: An FEC-Agnostic Design [53.67135680812675]
A new codeword-based QKD reconciliation scheme is proposed.
Both the authenticated classical channel (ClC) and the quantum channel (QuC) are protected by separate forward error correction (FEC) coding schemes.
The proposed system makes QKD reconciliation compatible with a wide range of FEC schemes.
arXiv Detail & Related papers (2024-03-24T14:47:08Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - PQCMC: Post-Quantum Cryptography McEliece-Chen Implicit Certificate Scheme [0.0]
This study proposes a post-quantum cryptography McEliece-Chen (PQCMC) based on an efficient random invertible matrix generation method to issue pseudonymous certificates with less time.
This study demonstrates the viability of the implicit certificate scheme based on PQC as a means of countering quantum computing threats.
arXiv Detail & Related papers (2024-01-03T13:34:20Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - FIPS Compliant Quantum Secure Communication using Quantum Permutation
Pad [0.602276990341246]
This paper proposes to take a nested mode to enable TLS 1.3 protocol with quantum-safe data, which can be made available today and is compliant.
We discussed the performance impacts of the handshaking phase of the nested TLS 1.3 with PQC and the symmetric encryption phase.
arXiv Detail & Related papers (2022-12-30T21:56:35Z) - Authentication of quantum key distribution with post-quantum
cryptography and replay attacks [1.8476815769956565]
Quantum key distribution (QKD) and post-quantum cryptography (PQC) are two cryptographic mechanisms with quantum-resistant security.
We propose two protocols based on PQC to realize the full authentication of QKD data post-processing.
arXiv Detail & Related papers (2022-06-02T17:29:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.