Differentially Private Kernelized Contextual Bandits
- URL: http://arxiv.org/abs/2501.07046v1
- Date: Mon, 13 Jan 2025 04:05:19 GMT
- Title: Differentially Private Kernelized Contextual Bandits
- Authors: Nikola Pavlovic, Sudeep Salgia, Qing Zhao,
- Abstract summary: We consider the problem of contextual kernel bandits with contexts, where the underlying reward function belongs to a known Reproducing Kernel Hilbert Space (RKHS)
We propose a novel algorithm that improves upon the state of the art and achieves an error rate of $mathcalOleft(sqrtfracgamma_TT + fracgamma_TT varepsilonright)$ after $T$ queries.
- Score: 8.658538065693206
- License:
- Abstract: We consider the problem of contextual kernel bandits with stochastic contexts, where the underlying reward function belongs to a known Reproducing Kernel Hilbert Space (RKHS). We study this problem under the additional constraint of joint differential privacy, where the agents needs to ensure that the sequence of query points is differentially private with respect to both the sequence of contexts and rewards. We propose a novel algorithm that improves upon the state of the art and achieves an error rate of $\mathcal{O}\left(\sqrt{\frac{\gamma_T}{T}} + \frac{\gamma_T}{T \varepsilon}\right)$ after $T$ queries for a large class of kernel families, where $\gamma_T$ represents the effective dimensionality of the kernel and $\varepsilon > 0$ is the privacy parameter. Our results are based on a novel estimator for the reward function that simultaneously enjoys high utility along with a low-sensitivity to observed rewards and contexts, which is crucial to obtain an order optimal learning performance with improved dependence on the privacy parameter.
Related papers
- FLIPHAT: Joint Differential Privacy for High Dimensional Sparse Linear Bandits [8.908421753758475]
High dimensional sparse linear bandits serve as an efficient model for sequential decision-making problems.
Motivated by data privacy concerns, we study the joint differentially private high dimensional sparse linear bandits.
We show that FLIPHAT achieves optimal regret in terms of privacy parameters.
arXiv Detail & Related papers (2024-05-22T22:19:12Z) - Adversarial Contextual Bandits Go Kernelized [21.007410990554522]
We study a generalization of the problem of online learning in adversarial linear contextual bandits by incorporating loss functions that belong to a Hilbert kernel space.
We propose a new optimistically biased estimator for the loss functions and reproducing near-optimal regret guarantees.
arXiv Detail & Related papers (2023-10-02T19:59:39Z) - Kernel $\epsilon$-Greedy for Contextual Bandits [4.1347433277076036]
We consider a kernelized version of the $epsilon$-greedy strategy for contextual bandits.
We propose an online weighted kernel ridge regression estimator for the reward functions.
arXiv Detail & Related papers (2023-06-29T22:48:34Z) - A Robust Phased Elimination Algorithm for Corruption-Tolerant Gaussian
Process Bandits [118.22458816174144]
We propose a novel robust elimination-type algorithm that runs in epochs, combines exploration with infrequent switching to select a small subset of actions, and plays each action for multiple time instants.
Our algorithm, GP Robust Phased Elimination (RGP-PE), successfully balances robustness to corruptions with exploration and exploitation.
We perform the first empirical study of robustness in the corrupted GP bandit setting, and show that our algorithm is robust against a variety of adversarial attacks.
arXiv Detail & Related papers (2022-02-03T21:19:36Z) - Meta-Learning Hypothesis Spaces for Sequential Decision-making [79.73213540203389]
We propose to meta-learn a kernel from offline data (Meta-KeL)
Under mild conditions, we guarantee that our estimated RKHS yields valid confidence sets.
We also empirically evaluate the effectiveness of our approach on a Bayesian optimization task.
arXiv Detail & Related papers (2022-02-01T17:46:51Z) - Anti-Concentrated Confidence Bonuses for Scalable Exploration [57.91943847134011]
Intrinsic rewards play a central role in handling the exploration-exploitation trade-off.
We introduce emphanti-concentrated confidence bounds for efficiently approximating the elliptical bonus.
We develop a practical variant for deep reinforcement learning that is competitive with contemporary intrinsic rewards on Atari benchmarks.
arXiv Detail & Related papers (2021-10-21T15:25:15Z) - Neural Contextual Bandits without Regret [47.73483756447701]
We propose algorithms for contextual bandits harnessing neural networks to approximate the unknown reward function.
We show that our approach converges to the optimal policy at a $tildemathcalO(T-1/2d)$ rate, where $d$ is the dimension of the context.
arXiv Detail & Related papers (2021-07-07T11:11:34Z) - Non-Euclidean Differentially Private Stochastic Convex Optimization [15.302167005107135]
We show that noisy gradient descent (SGD) algorithms attain the optimal excess risk in low-dimensional regimes.
Our work draws upon concepts from the geometry of normed spaces, such as the notions of regularity, uniform convexity, and uniform smoothness.
arXiv Detail & Related papers (2021-03-01T19:48:44Z) - Learning with User-Level Privacy [61.62978104304273]
We analyze algorithms to solve a range of learning tasks under user-level differential privacy constraints.
Rather than guaranteeing only the privacy of individual samples, user-level DP protects a user's entire contribution.
We derive an algorithm that privately answers a sequence of $K$ adaptively chosen queries with privacy cost proportional to $tau$, and apply it to solve the learning tasks we consider.
arXiv Detail & Related papers (2021-02-23T18:25:13Z) - Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy
Amplification by Shuffling [49.43288037509783]
We show that random shuffling amplifies differential privacy guarantees of locally randomized data.
Our result is based on a new approach that is simpler than previous work and extends to approximate differential privacy with nearly the same guarantees.
arXiv Detail & Related papers (2020-12-23T17:07:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.