Adaptive Noise-Tolerant Network for Image Segmentation
- URL: http://arxiv.org/abs/2501.07163v2
- Date: Wed, 15 Jan 2025 00:54:54 GMT
- Title: Adaptive Noise-Tolerant Network for Image Segmentation
- Authors: Weizhi Li,
- Abstract summary: We study whether integrating imperfect or noisy segmentation results from off-the-shelf segmentation algorithms may help achieve better segmentation results through a new Adaptive Noise-Tolerant Network (ANTN) model.
We extend the noisy label deep learning to image segmentation with two novel aspects: (1) multiple noisy labels can be integrated into one deep learning model; (2) noisy segmentation modeling, including probabilistic parameters, is adaptive, depending on the given testing image appearance.
- Score: 1.57731592348751
- License:
- Abstract: Unlike image classification and annotation, for which deep network models have achieved dominating superior performances compared to traditional computer vision algorithms, deep learning for automatic image segmentation still faces critical challenges. One of such hurdles is to obtain ground-truth segmentations as the training labels for deep network training. Especially when we study biomedical images, such as histopathological images (histo-images), it is unrealistic to ask for manual segmentation labels as the ground truth for training due to the fine image resolution as well as the large image size and complexity. In this paper, instead of relying on clean segmentation labels, we study whether and how integrating imperfect or noisy segmentation results from off-the-shelf segmentation algorithms may help achieve better segmentation results through a new Adaptive Noise-Tolerant Network (ANTN) model. We extend the noisy label deep learning to image segmentation with two novel aspects: (1) multiple noisy labels can be integrated into one deep learning model; (2) noisy segmentation modeling, including probabilistic parameters, is adaptive, depending on the given testing image appearance. Implementation of the new ANTN model on both the synthetic data and real-world histo-images demonstrates its effectiveness and superiority over off-the-shelf and other existing deep-learning-based image segmentation algorithms.
Related papers
- HisynSeg: Weakly-Supervised Histopathological Image Segmentation via Image-Mixing Synthesis and Consistency Regularization [15.13875300007579]
HisynSeg is a weakly-supervised semantic segmentation framework based on image-mixing synthesis and consistency regularization.
HisynSeg achieves a state-of-the-art performance on three datasets.
arXiv Detail & Related papers (2024-12-30T13:10:48Z) - UnSeg: One Universal Unlearnable Example Generator is Enough against All Image Segmentation [64.01742988773745]
An increasing privacy concern exists regarding training large-scale image segmentation models on unauthorized private data.
We exploit the concept of unlearnable examples to make images unusable to model training by generating and adding unlearnable noise into the original images.
We empirically verify the effectiveness of UnSeg across 6 mainstream image segmentation tasks, 10 widely used datasets, and 7 different network architectures.
arXiv Detail & Related papers (2024-10-13T16:34:46Z) - Microscopy Image Segmentation via Point and Shape Regularized Data
Synthesis [9.47802391546853]
We develop a unified pipeline for microscopy image segmentation using synthetically generated training data.
Our framework achieves comparable results to models trained on authentic microscopy images with dense labels.
arXiv Detail & Related papers (2023-08-18T22:00:53Z) - Unsupervised Segmentation of Fetal Brain MRI using Deep Learning
Cascaded Registration [2.494736313545503]
Traditional deep learning-based automatic segmentation requires extensive training data with ground-truth labels.
We propose a novel method based on multi-atlas segmentation, that accurately segments multiple tissues without relying on labeled data for training.
Our method employs a cascaded deep learning network for 3D image registration, which computes small, incremental deformations to the moving image to align it precisely with the fixed image.
arXiv Detail & Related papers (2023-07-07T13:17:12Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Learning to Annotate Part Segmentation with Gradient Matching [58.100715754135685]
This paper focuses on tackling semi-supervised part segmentation tasks by generating high-quality images with a pre-trained GAN.
In particular, we formulate the annotator learning as a learning-to-learn problem.
We show that our method can learn annotators from a broad range of labelled images including real images, generated images, and even analytically rendered images.
arXiv Detail & Related papers (2022-11-06T01:29:22Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
We propose a novel uncertainty-guided semi-supervised learning based on a student-teacher approach for training the segmentation network.
The proposed framework is a key contribution and applicable for biomedical image segmentation across various imaging modalities.
arXiv Detail & Related papers (2021-03-02T23:14:25Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
We propose a pairwise relation-based semi-supervised (PRS2) model for gland segmentation on histology images.
This model consists of a segmentation network (S-Net) and a pairwise relation network (PR-Net)
We evaluate our model against five recent methods on the GlaS dataset and three recent methods on the CRAG dataset.
arXiv Detail & Related papers (2020-08-06T15:02:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.