VAGeo: View-specific Attention for Cross-View Object Geo-Localization
- URL: http://arxiv.org/abs/2501.07194v1
- Date: Mon, 13 Jan 2025 10:42:18 GMT
- Title: VAGeo: View-specific Attention for Cross-View Object Geo-Localization
- Authors: Zhongyang Li, Xin Yuan, Wei Liu, Xin Xu,
- Abstract summary: Cross-view object geo-localization (CVOGL) aims to locate an object of interest in a captured ground- or drone-view image within the satellite image.
This paper proposes a novel View-specific Attention Geo-localization method (VAGeo) for accurate CVOGL.
- Score: 19.4845592498138
- License:
- Abstract: Cross-view object geo-localization (CVOGL) aims to locate an object of interest in a captured ground- or drone-view image within the satellite image. However, existing works treat ground-view and drone-view query images equivalently, overlooking their inherent viewpoint discrepancies and the spatial correlation between the query image and the satellite-view reference image. To this end, this paper proposes a novel View-specific Attention Geo-localization method (VAGeo) for accurate CVOGL. Specifically, VAGeo contains two key modules: view-specific positional encoding (VSPE) module and channel-spatial hybrid attention (CSHA) module. In object-level, according to the characteristics of different viewpoints of ground and drone query images, viewpoint-specific positional codings are designed to more accurately identify the click-point object of the query image in the VSPE module. In feature-level, a hybrid attention in the CSHA module is introduced by combining channel attention and spatial attention mechanisms simultaneously for learning discriminative features. Extensive experimental results demonstrate that the proposed VAGeo gains a significant performance improvement, i.e., improving acc@0.25/acc@0.5 on the CVOGL dataset from 45.43%/42.24% to 48.21%/45.22% for ground-view, and from 61.97%/57.66% to 66.19%/61.87% for drone-view.
Related papers
- Cross-View Image Set Geo-Localization [29.13525096798705]
Cross-view geo-localization (CVGL) has been widely applied in fields such as robotic navigation and augmented reality.
We propose a novel task: Cross-View Image Set Geo-Localization (Set-CVGL), which gathers multiple images with diverse perspectives as a query set for localization.
arXiv Detail & Related papers (2024-12-25T09:46:14Z) - GEOBench-VLM: Benchmarking Vision-Language Models for Geospatial Tasks [84.86699025256705]
We present GEOBench-VLM, a benchmark specifically designed to evaluate Vision-Language Models (VLMs) on geospatial tasks.
Our benchmark features over 10,000 manually verified instructions and covers a diverse set of variations in visual conditions, object type, and scale.
We evaluate several state-of-the-art VLMs to assess their accuracy within the geospatial context.
arXiv Detail & Related papers (2024-11-28T18:59:56Z) - Style Alignment based Dynamic Observation Method for UAV-View Geo-localization [7.185123213523453]
We propose a style alignment based dynamic observation method for UAV-view geo-localization.
Specifically, we introduce a style alignment strategy to transfrom the diverse visual style of drone-view images into a unified satellite images visual style.
A dynamic observation module is designed to evaluate the spatial distribution of images by mimicking human observation habits.
arXiv Detail & Related papers (2024-07-03T06:19:42Z) - Open-Vocabulary Object Detection via Scene Graph Discovery [53.27673119360868]
Open-vocabulary (OV) object detection has attracted increasing research attention.
We propose a novel Scene-Graph-Based Discovery Network (SGDN) that exploits scene graph cues for OV detection.
arXiv Detail & Related papers (2023-07-07T00:46:19Z) - Cross-View Visual Geo-Localization for Outdoor Augmented Reality [11.214903134756888]
We address the problem of geo-pose estimation by cross-view matching of query ground images to a geo-referenced aerial satellite image database.
We propose a new transformer neural network-based model and a modified triplet ranking loss for joint location and orientation estimation.
Experiments on several benchmark cross-view geo-localization datasets show that our model achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-03-28T01:58:03Z) - Cross-view Geo-localization via Learning Disentangled Geometric Layout
Correspondence [11.823147814005411]
Cross-view geo-localization aims to estimate the location of a query ground image by matching it to a reference geo-tagged aerial images database.
Recent works achieve outstanding progress on cross-view geo-localization benchmarks.
However, existing methods still suffer from poor performance on the cross-area benchmarks.
arXiv Detail & Related papers (2022-12-08T04:54:01Z) - CVLNet: Cross-View Semantic Correspondence Learning for Video-based
Camera Localization [89.69214577915959]
This paper tackles the problem of Cross-view Video-based camera localization.
We propose estimating the query camera's relative displacement to a satellite image before similarity matching.
Experiments have demonstrated the effectiveness of video-based localization over single image-based localization.
arXiv Detail & Related papers (2022-08-07T07:35:17Z) - Beyond Cross-view Image Retrieval: Highly Accurate Vehicle Localization
Using Satellite Image [91.29546868637911]
This paper addresses the problem of vehicle-mounted camera localization by matching a ground-level image with an overhead-view satellite map.
The key idea is to formulate the task as pose estimation and solve it by neural-net based optimization.
Experiments on standard autonomous vehicle localization datasets have confirmed the superiority of the proposed method.
arXiv Detail & Related papers (2022-04-10T19:16:58Z) - Co-visual pattern augmented generative transformer learning for
automobile geo-localization [12.449657263683337]
Cross-view geo-localization (CVGL) aims to estimate the geographical location of the ground-level camera by matching against enormous geo-tagged aerial images.
We present a novel approach using cross-view knowledge generative techniques in combination with transformers, namely mutual generative transformer learning (MGTL) for CVGL.
arXiv Detail & Related papers (2022-03-17T07:29:02Z) - Where am I looking at? Joint Location and Orientation Estimation by
Cross-View Matching [95.64702426906466]
Cross-view geo-localization is a problem given a large-scale database of geo-tagged aerial images.
Knowing orientation between ground and aerial images can significantly reduce matching ambiguity between these two views.
We design a Dynamic Similarity Matching network to estimate cross-view orientation alignment during localization.
arXiv Detail & Related papers (2020-05-08T05:21:16Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
We propose a novel framework by learning high-order relation and topology information for discriminative features and robust alignment.
Our framework significantly outperforms state-of-the-art by6.5%mAP scores on Occluded-Duke dataset.
arXiv Detail & Related papers (2020-03-18T12:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.