Tensor decomposition technique for qubit encoding of maximal-fidelity Lorentzian orbitals in real-space quantum chemistry
- URL: http://arxiv.org/abs/2501.07211v1
- Date: Mon, 13 Jan 2025 11:08:20 GMT
- Title: Tensor decomposition technique for qubit encoding of maximal-fidelity Lorentzian orbitals in real-space quantum chemistry
- Authors: Taichi Kosugi, Xinchi Huang, Hirofumi Nishi, Yu-ichiro Matsushita,
- Abstract summary: We propose an efficient scheme for encoding an MO as a many-qubit state from a Gaussian-type solution.
We demonstrate via numerical simulations that the proposed scheme is a powerful tool for encoding MOs of various quantum chemical systems.
- Score: 0.0
- License:
- Abstract: To simulate the real- and imaginary-time evolution of a many-electron system on a quantum computer based on the first-quantized formalism, we need to encode molecular orbitals (MOs) into qubit states for typical initial-state preparation. We propose an efficient scheme for encoding an MO as a many-qubit state from a Gaussian-type solution that can be obtained from a tractable solver on a classical computer. We employ the discrete Lorentzian functions (LFs) as a fitting basis set, for which we maximize the fidelity to find the optimal Tucker-form state to represent a target MO. For $n_{\mathrm{prod}}$ three-dimensional LFs, we provide the explicit circuit construction for the state preparation involving $\mathcal{O} (n_{\mathrm{prod}})$ CNOT gates. Furthermore, we introduce a tensor decomposition technique to construct a canonical-form state to approximate the Tucker-form state with controllable accuracy. Rank-$R$ decomposition reduces the CNOT gate count to $\mathcal{O} (R n_{\mathrm{prod}}^{1/3}).$ We demonstrate via numerical simulations that the proposed scheme is a powerful tool for encoding MOs of various quantum chemical systems, paving the way for first-quantized calculations using hundreds or more logical qubits.
Related papers
- Orbital-free density functional theory with first-quantized quantum subroutines [0.0]
We propose a quantum-classical hybrid scheme for performing orbital-free density functional theory (OFDFT) using probabilistic imaginary-time evolution (PITE)
PITE is applied to the part of OFDFT that searches the ground state of the Hamiltonian in each self-consistent field (SCF) iteration.
It is shown that obtaining the ground state energy of Hamiltonian requires a circuit depth of $O(log N_mathrmg)$.
arXiv Detail & Related papers (2024-07-23T05:34:11Z) - Efficient Quantum Simulation of Electron-Phonon Systems by Variational
Basis State Encoder [12.497706003633391]
Digital quantum simulation of electron-phonon systems requires truncating infinite phonon levels into $N$ basis states.
We propose a variational basis state encoding algorithm that reduces the scaling of the number of qubits and quantum gates.
arXiv Detail & Related papers (2023-01-04T04:23:53Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Qubit-efficient encoding scheme for quantum simulations of electronic
structure [5.16230883032882]
Simulating electronic structure on a quantum computer requires encoding of fermionic systems onto qubits.
We propose a qubit-efficient encoding scheme that requires the qubit number to be only logarithmic in the number of configurations that satisfy the required conditions and symmetries.
Our proposed scheme and results show the feasibility of quantum simulations for larger molecular systems in the noisy intermediate-scale quantum (NISQ) era.
arXiv Detail & Related papers (2021-10-08T13:20:18Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Even more efficient quantum computations of chemistry through tensor
hypercontraction [0.6234350105794442]
We describe quantum circuits with only $widetildecal O(N)$ Toffoli complexity that block encode the spectra of quantum chemistry Hamiltonians in a basis of $N$ arbitrary orbitals.
This is the lowest complexity that has been shown for quantum computations of chemistry within an arbitrary basis.
arXiv Detail & Related papers (2020-11-06T18:03:29Z) - Efficient construction of tensor-network representations of many-body
Gaussian states [59.94347858883343]
We present a procedure to construct tensor-network representations of many-body Gaussian states efficiently and with a controllable error.
These states include the ground and thermal states of bosonic and fermionic quadratic Hamiltonians, which are essential in the study of quantum many-body systems.
arXiv Detail & Related papers (2020-08-12T11:30:23Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Entanglement Production and Convergence Properties of the Variational
Quantum Eigensolver [0.0]
We use the Variational Quantum Eigensolver (VQE) algorithm to determine the ground state energies of two-dimensional model fermionic systems.
In particular, we focus on the nature of the entangler blocks which provide the most efficient convergence to the system ground state.
We show that the number of gates required to reach a solution within an error follows the Solovay-Kitaev scaling.
arXiv Detail & Related papers (2020-03-27T15:44:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.