Online inductive learning from answer sets for efficient reinforcement learning exploration
- URL: http://arxiv.org/abs/2501.07445v1
- Date: Mon, 13 Jan 2025 16:13:22 GMT
- Title: Online inductive learning from answer sets for efficient reinforcement learning exploration
- Authors: Celeste Veronese, Daniele Meli, Alessandro Farinelli,
- Abstract summary: We exploit inductive learning of answer set programs to learn a set of logical rules representing an explainable approximation of the agent policy.
We then perform answer set reasoning on the learned rules to guide the exploration of the learning agent at the next batch.
Our methodology produces a significant boost in the discounted return achieved by the agent, even in the first batches of training.
- Score: 52.03682298194168
- License:
- Abstract: This paper presents a novel approach combining inductive logic programming with reinforcement learning to improve training performance and explainability. We exploit inductive learning of answer set programs from noisy examples to learn a set of logical rules representing an explainable approximation of the agent policy at each batch of experience. We then perform answer set reasoning on the learned rules to guide the exploration of the learning agent at the next batch, without requiring inefficient reward shaping and preserving optimality with soft bias. The entire procedure is conducted during the online execution of the reinforcement learning algorithm. We preliminarily validate the efficacy of our approach by integrating it into the Q-learning algorithm for the Pac-Man scenario in two maps of increasing complexity. Our methodology produces a significant boost in the discounted return achieved by the agent, even in the first batches of training. Moreover, inductive learning does not compromise the computational time required by Q-learning and learned rules quickly converge to an explanation of the agent policy.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Inapplicable Actions Learning for Knowledge Transfer in Reinforcement
Learning [3.194414753332705]
We show that learning inapplicable actions greatly improves the sample efficiency of RL algorithms.
Thanks to the transferability of the knowledge acquired, it can be reused in other tasks and domains to make the learning process more efficient.
arXiv Detail & Related papers (2022-11-28T17:45:39Z) - Large Language Models can Implement Policy Iteration [18.424558160071808]
In-Context Policy Iteration is an algorithm for performing Reinforcement Learning (RL), in-context, using foundation models.
ICPI learns to perform RL tasks without expert demonstrations or gradients.
ICPI iteratively updates the contents of the prompt from which it derives its policy through trial-and-error interaction with an RL environment.
arXiv Detail & Related papers (2022-10-07T21:18:22Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Rethinking Learning Dynamics in RL using Adversarial Networks [79.56118674435844]
We present a learning mechanism for reinforcement learning of closely related skills parameterized via a skill embedding space.
The main contribution of our work is to formulate an adversarial training regime for reinforcement learning with the help of entropy-regularized policy gradient formulation.
arXiv Detail & Related papers (2022-01-27T19:51:09Z) - Interactive Learning from Activity Description [11.068923430996575]
We present a novel interactive learning protocol that enables training request-fulfilling agents by verbally describing their activities.
Our protocol gives rise to a new family of interactive learning algorithms that offer complementary advantages against traditional algorithms like imitation learning (IL) and reinforcement learning (RL)
We develop an algorithm that practically implements this protocol and employ it to train agents in two challenging request-fulfilling problems using purely language-description feedback.
arXiv Detail & Related papers (2021-02-13T22:51:11Z) - Temporal-Logic-Based Reward Shaping for Continuing Learning Tasks [57.17673320237597]
In continuing tasks, average-reward reinforcement learning may be a more appropriate problem formulation than the more common discounted reward formulation.
This paper presents the first reward shaping framework for average-reward learning.
It proves that, under standard assumptions, the optimal policy under the original reward function can be recovered.
arXiv Detail & Related papers (2020-07-03T05:06:57Z) - META-Learning Eligibility Traces for More Sample Efficient Temporal
Difference Learning [2.0559497209595823]
We propose a meta-learning method for adjusting the eligibility trace parameter, in a state-dependent manner.
The adaptation is achieved with the help of auxiliary learners that learn distributional information about the update targets online.
We prove that, under some assumptions, the proposed method improves the overall quality of the update targets, by minimizing the overall target error.
arXiv Detail & Related papers (2020-06-16T03:41:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.