Parameter-Inverted Image Pyramid Networks for Visual Perception and Multimodal Understanding
- URL: http://arxiv.org/abs/2501.07783v1
- Date: Tue, 14 Jan 2025 01:57:41 GMT
- Title: Parameter-Inverted Image Pyramid Networks for Visual Perception and Multimodal Understanding
- Authors: Zhaokai Wang, Xizhou Zhu, Xue Yang, Gen Luo, Hao Li, Changyao Tian, Wenhan Dou, Junqi Ge, Lewei Lu, Yu Qiao, Jifeng Dai,
- Abstract summary: Current image pyramids use the same large-scale model to process multiple resolutions, leading to significant computational cost.
We propose a novel network architecture, called COCO-Inverted Image Pyramid Networks (PIIP)
PIIP uses pretrained models (ViTs or CNNs) as branches to process multi-scale images, where images of higher resolutions are processed by smaller network branches to balance computational cost and performance.
- Score: 49.218195440600354
- License:
- Abstract: Image pyramids are widely adopted in top-performing methods to obtain multi-scale features for precise visual perception and understanding. However, current image pyramids use the same large-scale model to process multiple resolutions of images, leading to significant computational cost. To address this challenge, we propose a novel network architecture, called Parameter-Inverted Image Pyramid Networks (PIIP). Specifically, PIIP uses pretrained models (ViTs or CNNs) as branches to process multi-scale images, where images of higher resolutions are processed by smaller network branches to balance computational cost and performance. To integrate information from different spatial scales, we further propose a novel cross-branch feature interaction mechanism. To validate PIIP, we apply it to various perception models and a representative multimodal large language model called LLaVA, and conduct extensive experiments on various tasks such as object detection, segmentation, image classification and multimodal understanding. PIIP achieves superior performance compared to single-branch and existing multi-resolution approaches with lower computational cost. When applied to InternViT-6B, a large-scale vision foundation model, PIIP can improve its performance by 1%-2% on detection and segmentation with only 40%-60% of the original computation, finally achieving 60.0 box AP on MS COCO and 59.7 mIoU on ADE20K. For multimodal understanding, our PIIP-LLaVA achieves 73.0% accuracy on TextVQA and 74.5% on MMBench with only 2.8M training data. Our code is released at https://github.com/OpenGVLab/PIIP.
Related papers
- Flemme: A Flexible and Modular Learning Platform for Medical Images [5.086862917025204]
Flemme is a FLExible and Modular learning platform for MEdical images.
We construct encoders using building blocks based on convolution, transformer, and state-space model (SSM) to process both 2D and 3D image patches.
arXiv Detail & Related papers (2024-08-18T05:47:33Z) - Parameter-Inverted Image Pyramid Networks [49.35689698870247]
We propose a novel network architecture known as the Inverted Image Pyramid Networks (PIIP)
Our core idea is to use models with different parameter sizes to process different resolution levels of the image pyramid.
PIIP achieves superior performance in tasks such as object detection, segmentation, and image classification.
arXiv Detail & Related papers (2024-06-06T17:59:10Z) - Efficient Context Integration through Factorized Pyramidal Learning for
Ultra-Lightweight Semantic Segmentation [1.0499611180329804]
We propose a novel Factorized Pyramidal Learning (FPL) module to aggregate rich contextual information in an efficient manner.
We decompose the spatial pyramid into two stages which enables a simple and efficient feature fusion within the module to solve the notorious checkerboard effect.
Based on the FPL module and FIR unit, we propose an ultra-lightweight real-time network, called FPLNet, which achieves state-of-the-art accuracy-efficiency trade-off.
arXiv Detail & Related papers (2023-02-23T05:34:51Z) - DilateFormer: Multi-Scale Dilated Transformer for Visual Recognition [62.95223898214866]
We explore effective Vision Transformers to pursue a preferable trade-off between the computational complexity and size of the attended receptive field.
With a pyramid architecture, we construct a Multi-Scale Dilated Transformer (DilateFormer) by stacking MSDA blocks at low-level stages and global multi-head self-attention blocks at high-level stages.
Our experiment results show that our DilateFormer achieves state-of-the-art performance on various vision tasks.
arXiv Detail & Related papers (2023-02-03T14:59:31Z) - Multi-level Second-order Few-shot Learning [111.0648869396828]
We propose a Multi-level Second-order (MlSo) few-shot learning network for supervised or unsupervised few-shot image classification and few-shot action recognition.
We leverage so-called power-normalized second-order base learner streams combined with features that express multiple levels of visual abstraction.
We demonstrate respectable results on standard datasets such as Omniglot, mini-ImageNet, tiered-ImageNet, Open MIC, fine-grained datasets such as CUB Birds, Stanford Dogs and Cars, and action recognition datasets such as HMDB51, UCF101, and mini-MIT.
arXiv Detail & Related papers (2022-01-15T19:49:00Z) - Greedy Network Enlarging [53.319011626986004]
We propose a greedy network enlarging method based on the reallocation of computations.
With step-by-step modifying the computations on different stages, the enlarged network will be equipped with optimal allocation and utilization of MACs.
With application of our method on GhostNet, we achieve state-of-the-art 80.9% and 84.3% ImageNet top-1 accuracies.
arXiv Detail & Related papers (2021-07-31T08:36:30Z) - CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal
Biomedical Image Real-Time Segmentation [0.0]
We developed a novel light-weight architecture -- Channel-wise Feature Pyramid Network for Medicine.
It achieves comparable segmentation results on all five medical datasets with only 0.65 million parameters, which is about 2% of U-Net, and 8.8 MB memory.
arXiv Detail & Related papers (2021-05-10T02:29:11Z) - ResNeSt: Split-Attention Networks [86.25490825631763]
We present a modularized architecture, which applies the channel-wise attention on different network branches to leverage their success in capturing cross-feature interactions and learning diverse representations.
Our model, named ResNeSt, outperforms EfficientNet in accuracy and latency trade-off on image classification.
arXiv Detail & Related papers (2020-04-19T20:40:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.