Hierarchical Repository-Level Code Summarization for Business Applications Using Local LLMs
- URL: http://arxiv.org/abs/2501.07857v1
- Date: Tue, 14 Jan 2025 05:48:27 GMT
- Title: Hierarchical Repository-Level Code Summarization for Business Applications Using Local LLMs
- Authors: Nilesh Dhulshette, Sapan Shah, Vinay Kulkarni,
- Abstract summary: Existing methods primarily focus on smaller code units, such as functions, and struggle with larger code artifacts like files and packages.<n>This paper proposes a two-step hierarchical approach for repository-level code summarization, tailored to business applications.
- Score: 1.4932549821542682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In large-scale software development, understanding the functionality and intent behind complex codebases is critical for effective development and maintenance. While code summarization has been widely studied, existing methods primarily focus on smaller code units, such as functions, and struggle with larger code artifacts like files and packages. Additionally, current summarization models tend to emphasize low-level implementation details, often overlooking the domain and business context that are crucial for real-world applications. This paper proposes a two-step hierarchical approach for repository-level code summarization, tailored to business applications. First, smaller code units such as functions and variables are identified using syntax analysis and summarized with local LLMs. These summaries are then aggregated to generate higher-level file and package summaries. To ensure the summaries are grounded in business context, we design custom prompts that capture the intended purpose of code artifacts based on the domain and problem context of the business application. We evaluate our approach on a business support system (BSS) for the telecommunications domain, showing that syntax analysis-based hierarchical summarization improves coverage, while business-context grounding enhances the relevance of the generated summaries.
Related papers
- Code Summarization Beyond Function Level [0.213063058314067]
This study investigated the effectiveness of code summarization models beyond the function level.
The fine-tuned state-of-the-art CodeT5+ base model excelled in code summarization.
Repository-level summarization exhibited promising potential but requires significant computational resources.
arXiv Detail & Related papers (2025-02-23T20:31:21Z) - Analysis on LLMs Performance for Code Summarization [0.0]
Large Language Models (LLMs) have significantly advanced the field of code summarization.<n>This study aims to perform a comparative analysis of several open-source LLMs, namely LLaMA-3, Phi-3, Mistral, and Gemma.
arXiv Detail & Related papers (2024-12-22T17:09:34Z) - LITA: An Efficient LLM-assisted Iterative Topic Augmentation Framework [0.0]
Large language models (LLMs) offer potential for dynamic topic refinement and discovery, yet their application often incurs high API costs.<n>To address these challenges, we propose the LLM-assisted Iterative Topic Augmentation framework (LITA)<n>LITA integrates user-provided seeds with embedding-based clustering and iterative refinement.
arXiv Detail & Related papers (2024-12-17T01:43:44Z) - SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization [70.11167263638562]
Social relation reasoning aims to identify relation categories such as friends, spouses, and colleagues from images.
We first present a simple yet well-crafted framework named name, which combines the perception capability of Vision Foundation Models (VFMs) and the reasoning capability of Large Language Models (LLMs) within a modular framework.
arXiv Detail & Related papers (2024-10-28T18:10:26Z) - Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
We introduce CodePlan, a framework that generates and follows textcode-form plans -- pseudocode that outlines high-level, structured reasoning processes.
CodePlan effectively captures the rich semantics and control flows inherent to sophisticated reasoning tasks.
It achieves a 25.1% relative improvement compared with directly generating responses.
arXiv Detail & Related papers (2024-09-19T04:13:58Z) - Fine-tuning Multimodal Large Language Models for Product Bundling [53.01642741096356]
We introduce Bundle-MLLM, a novel framework that fine-tunes large language models (LLMs) through a hybrid item tokenization approach.
Specifically, we integrate textual, media, and relational data into a unified tokenization, introducing a soft separation token to distinguish between textual and non-textual tokens.
We propose a progressive optimization strategy that fine-tunes LLMs for disentangled objectives: 1) learning bundle patterns and 2) enhancing multimodal semantic understanding specific to product bundling.
arXiv Detail & Related papers (2024-07-16T13:30:14Z) - On the Impacts of Contexts on Repository-Level Code Generation [5.641402231731082]
We present textbfmethodnamews, a novel benchmark designed to evaluate repository-level code generation.
We focus on three key aspects: executability, functional correctness through comprehensive test case generation, and accurate utilization of cross-file contexts.
arXiv Detail & Related papers (2024-06-17T10:45:22Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - T-RAG: Lessons from the LLM Trenches [7.545277950323593]
Application area is question answering over private enterprise documents.
Retrieval-Augmented Generation is most prominent framework for building LLM-based applications.
System, which we call Tree-RAG (T-RAG), uses a tree structure to represent entity hierarchies.
arXiv Detail & Related papers (2024-02-12T08:45:08Z) - A Review of Repository Level Prompting for LLMs [0.0]
Large Language Models (LLMs) have led to notable successes, such as achieving a 94.6% solve rate on the HumanEval benchmark.
There is an increasing commercial push for repository-level inline code completion tools, such as GitHub Copilot and Tab Nine.
This paper delves into the transition from individual coding problems to repository-scale solutions.
arXiv Detail & Related papers (2023-12-15T00:34:52Z) - Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations [50.81844184210381]
We propose a general paradigm that augments large language models with DOmain-specific KnowledgE to enhance their performance on practical applications, namely DOKE.
This paradigm relies on a domain knowledge extractor, working in three steps: 1) preparing effective knowledge for the task; 2) selecting the knowledge for each specific sample; and 3) expressing the knowledge in an LLM-understandable way.
arXiv Detail & Related papers (2023-11-16T07:09:38Z) - Domain-Expanded ASTE: Rethinking Generalization in Aspect Sentiment Triplet Extraction [67.54420015049732]
Aspect Sentiment Triplet Extraction (ASTE) is a challenging task in sentiment analysis, aiming to provide fine-grained insights into human sentiments.
Existing benchmarks are limited to two domains and do not evaluate model performance on unseen domains.
We introduce a domain-expanded benchmark by annotating samples from diverse domains, enabling evaluation of models in both in-domain and out-of-domain settings.
arXiv Detail & Related papers (2023-05-23T18:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.