Phase of Flight Classification in Aviation Safety using LSTM, GRU, and BiLSTM: A Case Study with ASN Dataset
- URL: http://arxiv.org/abs/2501.07925v1
- Date: Tue, 14 Jan 2025 08:26:58 GMT
- Title: Phase of Flight Classification in Aviation Safety using LSTM, GRU, and BiLSTM: A Case Study with ASN Dataset
- Authors: Aziida Nanyonga, Hassan Wasswa, Graham Wild,
- Abstract summary: The research aims to determine whether the phase of flight can be inferred from narratives of post-accident events using NLP techniques.
The classification performance of various deep learning models was evaluated.
- Score: 0.0
- License:
- Abstract: Safety is the main concern in the aviation industry, where even minor operational issues can lead to serious consequences. This study addresses the need for comprehensive aviation accident analysis by leveraging natural language processing (NLP) and advanced AI models to classify the phase of flight from unstructured aviation accident analysis narratives. The research aims to determine whether the phase of flight can be inferred from narratives of post-accident events using NLP techniques. The classification performance of various deep learning models was evaluated. For single RNN-based models, LSTM achieved an accuracy of 63%, precision 60%, and recall 61%. BiLSTM recorded an accuracy of 64%, precision 63%, and a recall of 64%. GRU exhibited balanced performance with an accuracy and recall of 60% and a precision of 63%. Joint RNN-based models further enhanced predictive capabilities. GRU-LSTM, LSTM-BiLSTM, and GRU-BiLSTM demonstrated accuracy rates of 62%, 67%, and 60%, respectively, showcasing the benefits of combining these architectures. To provide a comprehensive overview of model performance, single and combined models were compared in terms of the various metrics. These results underscore the models' capacity to classify the phase of flight from raw text narratives, equipping aviation industry stakeholders with valuable insights for proactive decision-making. Therefore, this research signifies a substantial advancement in the application of NLP and deep learning models to enhance aviation safety.
Related papers
- Aviation Safety Enhancement via NLP & Deep Learning: Classifying Flight Phases in ATSB Safety Reports [0.0]
This study employs Natural Language Processing (NLP) and Deep Learning models, including LSTM, CNN, Bidirectional LSTM (BLSTM), and simple Recurrent Neural Networks (sRNN) to classify flight phases in safety reports from the Australian Transport Safety Bureau (ATSB)
The models exhibited high accuracy, precision, recall, and F1 scores, with LSTM achieving the highest performance of 87%, 88%, 87%, and 88%, respectively.
arXiv Detail & Related papers (2025-01-14T08:18:41Z) - Natural Language Processing and Deep Learning Models to Classify Phase of Flight in Aviation Safety Occurrences [14.379311972506791]
Researchers applied natural language processing (NLP) and artificial intelligence (AI) models to process text narratives to classify the flight phases of safety occurrences.
The classification performance of two deep learning models, ResNet and sRNN was evaluated, using an initial dataset of 27,000 safety occurrence reports from the NTSB.
arXiv Detail & Related papers (2025-01-11T15:02:49Z) - Sequential Classification of Aviation Safety Occurrences with Natural Language Processing [14.379311972506791]
The ability to classify and categorise safety occurrences would help aviation industry stakeholders make informed safety-critical decisions.
The classification performance of various deep learning models was evaluated on a set of 27,000 safety occurrence reports from the NTSB.
arXiv Detail & Related papers (2025-01-11T09:23:55Z) - Comparative Study of Deep Learning Architectures for Textual Damage Level Classification [0.0]
This study aims to leverage Natural Language Processing (NLP) and deep learning models to analyze unstructured text narratives.
Using LSTM, BLSTM, GRU, and sRNN deep learning models, we classify the aircraft damage level incurred during safety occurrences.
The sRNN model emerged as the top performer in terms of recall and accuracy, boasting a remarkable 89%.
arXiv Detail & Related papers (2025-01-03T08:23:29Z) - Classification of Operational Records in Aviation Using Deep Learning Approaches [0.0]
This study evaluates the performance of four different models for DP (deep learning) in a classification task involving Commercial, Military, and Private categories.
Among the models, BLSTM achieved the highest overall accuracy of 72%, demonstrating superior performance in stability and balanced classification.
CNN and sRNN exhibited lower accuracies of 67% and 69%, with significant misclassifications in the Private class.
arXiv Detail & Related papers (2025-01-02T12:12:02Z) - Improving Anomalous Sound Detection via Low-Rank Adaptation Fine-Tuning of Pre-Trained Audio Models [45.90037602677841]
This paper introduces a robust Anomalous Sound Detection (ASD) model that leverages audio pre-trained models.
We fine-tune these models using machine operation data, employing SpecAug as a data augmentation strategy.
Our experiments establish a new benchmark of 77.75% on the evaluation set, with a significant improvement of 6.48% compared with previous state-of-the-art (SOTA) models.
arXiv Detail & Related papers (2024-09-11T05:19:38Z) - LIMA: Less Is More for Alignment [112.93890201395477]
We train LIMA, a 65B parameter LLaMa language model fine-tuned with the standard supervised loss on only 1,000 carefully curated prompts and responses.
LIMA demonstrates remarkably strong performance, learning to follow specific response formats from only a handful of examples.
In a controlled human study, responses from LIMA are either equivalent or strictly preferred to GPT-4 in 43% of cases.
arXiv Detail & Related papers (2023-05-18T17:45:22Z) - EEG-Fest: Few-shot based Attention Network for Driver's Vigilance
Estimation with EEG Signals [160.57870373052577]
A lack of driver's vigilance is the main cause of most vehicle crashes.
EEG has been reliable and efficient tool for drivers' drowsiness estimation.
arXiv Detail & Related papers (2022-11-07T21:35:08Z) - Scaling & Shifting Your Features: A New Baseline for Efficient Model
Tuning [126.84770886628833]
Existing finetuning methods either tune all parameters of the pretrained model (full finetuning) or only tune the last linear layer (linear probing)
We propose a new parameter-efficient finetuning method termed as SSF, representing that researchers only need to Scale and Shift the deep Features extracted by a pre-trained model to catch up with the performance full finetuning.
arXiv Detail & Related papers (2022-10-17T08:14:49Z) - End-to-end LSTM based estimation of volcano event epicenter localization [55.60116686945561]
An end-to-end based LSTM scheme is proposed to address the problem of volcano event localization.
LSTM was chosen due to its capability to capture the dynamics of time varying signals.
Results show that the LSTM based architecture provided a success rate, i.e., an error smaller than 1.0Km, equal to 48.5%.
arXiv Detail & Related papers (2021-10-27T17:11:33Z) - Towards a Competitive End-to-End Speech Recognition for CHiME-6 Dinner
Party Transcription [73.66530509749305]
In this paper, we argue that, even in difficult cases, some end-to-end approaches show performance close to the hybrid baseline.
We experimentally compare and analyze CTC-Attention versus RNN-Transducer approaches along with RNN versus Transformer architectures.
Our best end-to-end model based on RNN-Transducer, together with improved beam search, reaches quality by only 3.8% WER abs. worse than the LF-MMI TDNN-F CHiME-6 Challenge baseline.
arXiv Detail & Related papers (2020-04-22T19:08:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.