An Adaptive Orthogonal Convolution Scheme for Efficient and Flexible CNN Architectures
- URL: http://arxiv.org/abs/2501.07930v1
- Date: Tue, 14 Jan 2025 08:32:12 GMT
- Title: An Adaptive Orthogonal Convolution Scheme for Efficient and Flexible CNN Architectures
- Authors: Thibaut Boissin, Franck Mamalet, Thomas Fel, Agustin Martin Picard, Thomas Massena, Mathieu Serrurier,
- Abstract summary: We introduce AOC (Adaptative Orthogonal Convolution), a scalable method for constructing orthogonal convolutions.
We demonstrate through our experiments that our method produces expressive models that become increasingly efficient as they scale.
- Score: 8.136541584281987
- License:
- Abstract: Orthogonal convolutional layers are the workhorse of multiple areas in machine learning, such as adversarial robustness, normalizing flows, GANs, and Lipschitzconstrained models. Their ability to preserve norms and ensure stable gradient propagation makes them valuable for a large range of problems. Despite their promise, the deployment of orthogonal convolution in large-scale applications is a significant challenge due to computational overhead and limited support for modern features like strides, dilations, group convolutions, and transposed convolutions.In this paper, we introduce AOC (Adaptative Orthogonal Convolution), a scalable method for constructing orthogonal convolutions, effectively overcoming these limitations. This advancement unlocks the construction of architectures that were previously considered impractical. We demonstrate through our experiments that our method produces expressive models that become increasingly efficient as they scale. To foster further advancement, we provide an open-source library implementing this method, available at https://github.com/thib-s/orthogonium.
Related papers
- Orchid: Flexible and Data-Dependent Convolution for Sequence Modeling [4.190836962132713]
This paper introduces Orchid, a novel architecture designed to address the quadratic complexity of traditional attention mechanisms.
At the core of this architecture lies a new data-dependent global convolution layer, which contextually adapts its conditioned kernel on input sequence.
We evaluate the proposed model across multiple domains, including language modeling and image classification, to highlight its performance and generality.
arXiv Detail & Related papers (2024-02-28T17:36:45Z) - GloptiNets: Scalable Non-Convex Optimization with Certificates [61.50835040805378]
We present a novel approach to non-cube optimization with certificates, which handles smooth functions on the hypercube or on the torus.
By exploiting the regularity of the target function intrinsic in the decay of its spectrum, we allow at the same time to obtain precise certificates and leverage the advanced and powerful neural networks.
arXiv Detail & Related papers (2023-06-26T09:42:59Z) - SMPConv: Self-moving Point Representations for Continuous Convolution [4.652175470883851]
This paper presents an alternative approach to building a continuous convolution without neural networks.
We present self-moving point representations where weight parameters freely move, and schemes are used to implement continuous functions.
Due to its lightweight structure, we are first to demonstrate the effectiveness of continuous convolution in a large-scale setting.
arXiv Detail & Related papers (2023-04-05T09:36:30Z) - Towards Practical Control of Singular Values of Convolutional Layers [65.25070864775793]
Convolutional neural networks (CNNs) are easy to train, but their essential properties, such as generalization error and adversarial robustness, are hard to control.
Recent research demonstrated that singular values of convolutional layers significantly affect such elusive properties.
We offer a principled approach to alleviating constraints of the prior art at the expense of an insignificant reduction in layer expressivity.
arXiv Detail & Related papers (2022-11-24T19:09:44Z) - Existence, Stability and Scalability of Orthogonal Convolutional Neural
Networks [1.0742675209112622]
Imposing orthogonality on the layers of neural networks is known to facilitate the learning by limiting the exploding/vanishing of the gradient; decorrelate the features; improve the robustness.
This paper studies the theoretical properties of orthogonal convolutional layers.
arXiv Detail & Related papers (2021-08-12T09:30:53Z) - X-volution: On the unification of convolution and self-attention [52.80459687846842]
We propose a multi-branch elementary module composed of both convolution and self-attention operation.
The proposed X-volution achieves highly competitive visual understanding improvements.
arXiv Detail & Related papers (2021-06-04T04:32:02Z) - Orthogonalizing Convolutional Layers with the Cayley Transform [83.73855414030646]
We propose and evaluate an alternative approach to parameterize convolutional layers that are constrained to be orthogonal.
We show that our method indeed preserves orthogonality to a high degree even for large convolutions.
arXiv Detail & Related papers (2021-04-14T23:54:55Z) - Self Normalizing Flows [65.73510214694987]
We propose a flexible framework for training normalizing flows by replacing expensive terms in the gradient by learned approximate inverses at each layer.
This reduces the computational complexity of each layer's exact update from $mathcalO(D3)$ to $mathcalO(D2)$.
We show experimentally that such models are remarkably stable and optimize to similar data likelihood values as their exact gradient counterparts.
arXiv Detail & Related papers (2020-11-14T09:51:51Z) - AdaLead: A simple and robust adaptive greedy search algorithm for
sequence design [55.41644538483948]
We develop an easy-to-directed, scalable, and robust evolutionary greedy algorithm (AdaLead)
AdaLead is a remarkably strong benchmark that out-competes more complex state of the art approaches in a variety of biologically motivated sequence design challenges.
arXiv Detail & Related papers (2020-10-05T16:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.